
- •Основні положення теорії алгоритмів та її застосування
- •Введення до теорії алгоритмів
- •Загальні риси алгоритмів
- •Машина Поста
- •Машина т’юринга
- •Основи лямбда-числення та функціонального програмування
- •Теза Черча-т’юринга про алгоритмічну розв’язність задачі
- •Проблема розв’язності (зависання)
- •Алгоритмічно нерозв’язні задачі
- •Проблема відсутності загального методу вирішення задачі
- •Проблема інформаційної невизначеності задачі
- •Проблема логічної нерозв’язності задачі
- •Побудова машини т’юринга для обчислення деяких простих функцій
- •Введення до оцінки складності алгоритмів
- •Визначення порядку складності алгоритму
- •Оптимізація алгоритмів
- •Структури даних в алгоритмічній мові програмування
- •Визначення алгоритмічної мови програмування
- •Базові елементи сучасної мови програмування: типи даних; екземпляри даних; вирази; оператори; функції; класи.
- •Поняття типу даних
- •Прості типи: числові; символьні; логічні.
- •Тип даних рядок
- •Структуровані типи даних: масиви, записи, множини
- •Типи даних за значенням і за посиланням
- •Сумісність типів та перетворення між типами даних
- •Екземпляри даних: змінні, константи
- •Видимість даних
- •Управління ходом виконання та структурування програм в алгоритмічній мові програмування
- •Вирази, операнди та операції
- •Основні операції: арифметичні; логічні; бульові; з використанням рядків
- •Поняття оператора
- •Прості оператори: присвоювання; виклику функції
- •Оператори управління ходом виконання: розгалуження; вибору; цикли; переходу
- •Структурування програм: функції та класи
- •Параметри функцій: вхідні, результуючі.
- •Рекурсивні функції
- •Файли: текстові, бінарні
- •Алгоритми чисельних методів, апроксимації функцій, інтегрування та вирішення рівнянь з одним невідомим
- •Чисельні методи
- •Особливості вирішення задач чисельними методами, точність та коректність рішень
- •Апроксимації функцій: лінійна інтерполяція; інтерполяційний многочлен Ньютона.
- •Чисельне інтегрування: метод трапецій; метод Сімпсона; метод Сімпсона з оцінкою погрішності.
- •Вирішення рівнянь з одним невідомим: метод простих ітерацій; метод Ньютона; метод парабол.
- •Алгоритми вирішення системи лінійних рівнянь, пошуку екстремуму функції
- •Вирішення системи лінійних рівнянь методом Гауса
- •Пошук екстремуму функцій одної змінної: метод золотого перетину; метод парабол.
- •Пошук екстремуму функцій багатьох змінних: метод координатного спуску; метод найскорішого спуску.
- •Алгоритми обробки масивів
- •Визначення масивів
- •Операції над масивами
- •Упорядкування масивів: сортування вибором; сортування вставкою; бульбашкове сортування; сортування методом Шелла; метод швидкого сортування.
- •Вибір методів сортування
- •Пошук в упорядкованих масивах методом половинного поділу, інтерполяційним методом
- •Застосування індексів для пошуку у невпорядкованих даних
- •Алгоритми обробки даних на основі списків та дерев
- •Визначення списку
- •Види списків: незалежні списки, однозв’язані списки; двозв’язані списки; кільцеві списки; упорядковані списки
- •Основні операції над списками: включення елементу до списку; видалення елементу; перехід між елементами; ітератор для списку
- •Упорядкування та пошук в списках
- •Похідні структури даних: черга, стек, дек
- •Визначення дерева
- •Впорядковані дерева
- •Бінарні дерева
- •Основні операції з бінарними деревами: включення елементу; видалення елементу; обхід дерева
- •Балансування дерева
- •Алгоритми обробки текстових даних на основі регулярних виразів
- •Введення до теорії кінцевих автоматів
- •Графічне представлення кінцевих автоматів
- •Використання кінцевого автомату: синтаксичний аналіз.
- •Реалізація синтаксичного аналізу файлу з розділяючими комами
- •Детерміновані та недетерміновані кінцеві автомати
- •Регулярні вирази
- •Форма Бекуса-Наура для запису регулярних виразів
- •Синтаксичний аналіз регулярних виразів
- •Компіляція регулярних виразів
- •Інструменти для спрощення роботи з регулярними виразами
- •Зіставлення рядків з регулярними виразами.
- •Алгоритми систем числення
- •Введення до систем числення
- •Двійкова система числення
- •Шістнадцяткова система числення
- •Системи числення з нетрадиційними основами
- •Перетворення між різними системами числення
- •Арифметика чисел з плаваючою комою
- •Точність операцій з плаваючою комою
- •Арифметика великих чисел
- •Алгоритми криптографії та хешування
- •Значення випадкових чисел у програмуванні
- •Алгоритми генерації рівномірно розподілених псевдовипадкових чисел
- •Перевірка якості випадкових чисел
- •Кодування з виправленням помилок
- •Стиснення даних
- •Стиснення даних зі словником
- •Алгоритм стиснення даних Лемпела-Зіва
- •Введення до криптографії
- •Елементи теорії порівнянь
- •Шифрування за допомогою випадкових чисел
- •Створення таємного ключа по Діффі-Хеллману
- •Система rsa
- •Алгоритми цифрового підпису
- •Введення до хешування
- •Функції хешування
- •Проста функція хешування рядків
- •Функції хешування з використанням рандомізації
- •Вирішення конфліктів за допомогою лінійного зондування
- •Псевдовипадкове зондування
- •Подвійне хешування
Визначення дерева
Дерево - одна з найпоширеніших структур даних. Формально дерево визначається як скінченна множина Т з однієї або більше вершин (вузлів, nodes), яке задовольняє наступним вимогам:
існує один виокремлений вузол - корень (root) дерева
інші вузли (за виключенням кореня) розподілені серед m ≥ 0 непересічних множин T1...Tm і кожна з цих множин в свою чергу є деревом. Дерева T1...Tm мають назву піддерев (subtrees) даного кореня.
Графічне зображення дерева представлено на рис. 7.5.
Рисунок 7.5 – Графічне зображення дерева
З цього визначення випливає, що кожна вершина є в свою чергу коренем деякого піддерева. Кількість піддерев вершини має назву ступеня (degree) цієї вершини. Вершина ступеню нуль має назву кінцевої (terminal) або листа (leaf). Некінцева вершина також має назву вершини розгалуження (branch node). Нехай x - довільна вершина дерева з коренем r. Тоді існує єдиний шлях з r до x. Усі вершини на цьому шляху називаються предками (ancestors) x; якщо деяка вершина y є предком x, то x називається нащадком (descendant) y. Нащадки та предки вершини x, що не співпадають з нею самою, називаються власними нащадками та предками. Кожну вершину x, в свою чергу, можна розглядати як корень деякого піддерево, елементами якого є вершини-нащадки x. Якщо вершини x є предком y та не існує вершин поміж ними (тобто x та y з'єднані одним ребром), а також існують предки для x (тобто x не є коренем), то вершина x називається батьком (parent) до y, а y - дитиною (child) x. Коренева вершина єдина не має батьків. Вершини, що мають спільного батька, називаються братами (siblings). Вершини, що мають дітей, називаються внутрішніми (internal). Глибиною вершини x називається довжина шляху від кореня до цієї вершини. Максимальна глибина вершин дерева називається висотою.
Лісом (forest) називають множину дерев, які не перетинаються.
Найчастіше дерева в інформатиці зображують з коренем, який знаходиться зверху (говорять, що дерево в інформатиці "росте вниз").
Важливими операціями на деревах є:
обхід вершин в різному порядку;
перенумерація вершин;
пошук елемента;
додавання елемента у визначене місце в дереві;
видалення елемента;
видалення цілого фрагмента дерева;
додавання цілого фрагмента дерева;
трансформації (повороти) фрагментів дерева;
знаходження кореня для будь-якої вершини.
Найбільшого розповсюдження ці структури даних набули в тих задачах, де необхідне маніпулювання з ієрархічними даними, ефективний пошук в даних, їхнє структуроване зберігання та модифікація.
Існують різні сфери використання та способи представлення дерев.
Графічне представлення дерева у вигляді множини представлено на рисунку 7.6.
Рисунок 7.6 – Графічне представлення дерева у вигляді множини
Більш формально представлення дерева у вигляді множини можна сприймати наступним чином: вершина Б є дочірньою по відношенню до вершини А в тому разі, якщо діапазон чисел вершини Б лежить всередині діапазону вершини А.
Представлення дерева у вигляді вкладених дужок:
(V0(V1(V2(V5)(V6))(V3)(V4))(V7(V8)(V9(V10))))
Представлення дерева у вигляді графа (рисунок 7.7).
Рисунок 7.7 – Представлення дерева у вигляді графа
Представлення дерева у вигляді списку з уступами (рисунок 7.8).
Рисунок 7.8 – Представлення дерева у вигляді списку з уступами
Представлення дерева у вигляді десяткової системи Д’юі (рисунок 7.9)
Рисунок 7.9 – Представлення дерева у вигляді десяткової системи Д’юі
Представлення дерева у вигляді діаграми Венна (рисунок 7.10)
Рисунок 7.10 – Представлення дерева у вигляді діаграми Венна
Обхід дерева
Обхід дерева – одна з найпоширеніших операцій з деревами.
Передбачає відвідування усіх вершин дерева, при цьому кожна вершина відвідується один раз.
Існують різні способи здійснення обходу дерева: обхід у глибину з використанням рекурсії, обхід у глибину без використання рекурсії, обхід у ширину та ін.