
- •1. Язык логики высказываний. Простые высказывания, сложные высказывания, логические связки. Роль связок в естественном языке.
- •2. Синтаксис языка логики высказываний: алфавит и правила построения формул. Семантика языка логики высказываний, интерпретация формул.
- •3. Свойства формул: общезначимость, выполнимость, противоречивость, опровержимость.
- •4. Основные схемы логически правильных рассуждений.
- •5. Основные тавтологии, выражающие свойства логических операций.
- •6. Основные правила получения тавтологий.
- •7. Логическая равносильность формул. Алгоритм проверки логической равносильности формул. Свойства отношения равносильности на множестве формул. Равносильные преобразования.
- •8. Логическое следование формул. Логические следствия и посылки. Алгоритм проверки формул на логическое следование. Признаки логического следствия. Два свойства логического следования.
- •9. Следование и равносильность формул.
- •10. Нахождение следствия для данных посылок.
- •11. Нахождение посылок для данного следствия.
- •12. Алгебра логики. Функции алгебры логики. K-значные логики.
- •13. Способы задания функций алгебры логики. Единичные и нулевые наборы функций алгебры логики. Фиктивные (несущественные) переменные.
- •14. Бинарные функции алгебры логики.
- •15. Суперпозиции и формулы. Глубина формулы. Способы записи формул.
- •16. Эквивалентные формулы. Способы установления эквивалентности формул.
- •17. Полнота и замкнутость системы функций. Функционально полные базисы. Классы Поста. Теорема Поста о полноте системы булевых функций.
- •18. Булева алгебра логических операций. Основные эквивалентные соотношения (законы) в булевой алгебре.
- •19. Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- •20. Днф, сднф, кнф, скнф. Процедуры приведения к днф и кнф.
- •2 1. Двойственность.
- •22. Алгебра Вебба, алгебра Шеффера, импликативная алгебра, коимпликативная алгебра, алгебра Жегалкина.
- •23. Полиномы Жегалкина. Процедуры приведения к пнф.
- •24. Конечно-значные логики: алгебра Вебба, алгебра Поста, алгебра Россера–Тьюкетта.
- •25. Исчисление высказываний как формальная система, множественность аксиоматизаций. Проблема выводимости. Прямой вывод.
- •26. Теорема дедукции. Связь выводимости и истинности формул в логике высказываний. Выполнимые и общезначимые формулы.
- •27. Понятие логического следования, принцип дедукции. Правило резолюций, метод резолюций. Стратегии метода резолюций.
- •29. Алгоритм построения резолюций для множества фраз Хорна.
- •30. Свойства формализованного счисления высказываний.
- •31. Предикат. Предикаты и отношения. Предикаты и функции. Предикаты и высказывания.
- •32. Синтаксис языка логики предикатов: алфавит, термы, атомы, правила построения формул.
- •33. Кванторные операции. Свободные и связанные вхождения переменных. Логический квадрат.
- •34. Численные кванторы. Ограниченные кванторы.
- •35. Множество истинности предикатов. Равносильность и следование предикатов.
- •37. Приведенная нормальная форма. Процедура получения приведенной нормальной формы.
- •38. Предваренная нормальная форма. Процедура получения предваренной нормальной формы.
- •39. Проблема разрешимости для общезначимости и выполнимости формул логики предикатов. Теорема Черча. Частные случаи.
- •40. Методы доказательства в логике предикатов.
- •41. Исчисление предикатов как формальная система. Формальный вывод в исчислении предикатов. Правило переименования свободных переменных. Правило переименования связанных переменных.
- •42. Выводимость и истинность в логике предикатов. Эквивалентные преобразования.
- •43. Предваренная, сколемовская и клаузальная формы. Алгоритм получения клаузальной формы.
- •45. Принцип логического программирования.
- •46. Применение логики предикатов в логико-математической практике.
- •47. Классификация высказываний по Аристотелю.
- •48. Методы рассуждений. Аристотелева силлогистика. Теоретико-множественная интерпретация аристотелевой силлогистики
- •49. Принцип полной дизъюнкции в предикатной форме
- •50. Метод (полной) математической индукции.
- •51. Необходимые и достаточные условия
- •52. Понятия формальной системы и формального вывода. Аксиоматическая (формальная) теория и принципы ее построения.
- •53. Вывод и выводимость в формальной теории. Разрешимые и неразрешимые формулы. Доказательство и доказуемость. Теорема формальной теории.
- •54. Основные свойства формальных систем: непротиворечивость, полнота, разрешимость. Полнота и непротиворечивость исчисления высказываний. Полнота и непротиворечивость исчисления предикатов.
- •55. Прикладные исчисления предикатов. Формальная арифметика. Теорема Генцена о непротиворечивости формальной арифметики.
- •56. Теоремы о неполноте формальных систем, смысл и значение теорем Геделя для практической информатики.
- •57. Неклассические логики.
- •58. Интуиционистская логика.
- •59. Нечеткая логика.
- •60. Модальные логики. Типы модальностей.
- •61. Временные логики. Приложение временных логик к программированию.
- •62. Алгоритмические логики. Принципы построения алгоритмической логики. Алгоритмическая логика Хоара.
- •63. Многозначные логики. Трёхзначная логика я.Лукасевича. M-значная логика э.Поста.
- •64. Предпосылки возникновения теории алгоритмов. Основные требования к алгоритмам. Подходы к уточнению понятия «алгоритм». Три основных типа универсальных алгоритмических моделей.
- •65. Машина Тьюринга. Конфигурация машины Тьюринга. Функция, правильно вычислимая по Тьюрингу. Эквивалентные машины Тьюринга. Композиция машин Тьюринга.
- •66. Вычисление предикатов на машине Тьюринга.
- •67. Универсальная машина Тьюринга. План построения универсальной машины Тьюринга.
- •68. Тезис Тьюринга.
- •69. Проблема остановки как пример алгоритмически неразрешимых проблем.
- •70. Машина Поста.
- •71. Рекурсивные функции. Примитивно-рекурсивные функции. Примитивно-рекурсивные операторы. Частично-рекурсивные функции. Тезис Черча.
- •72. Нормальные алгорифмы Маркова. Нормально вычислимые функции и принцип нормализации Маркова.
- •73. Вычислимость и разрешимость. Нумерация алгоритмов. Алгоритмически разрешимые и неразрешимые задачи. Проблема остановки, проблема самоприменимости, проблема пустой ленты.
- •74. Требование результативности и теория алгоритмов.
- •75. Разрешимые и перечислимые множества. Связь между разрешимостью и перечислимостью множеств. Теорема Райса.
- •76. Сложность алгоритмов. Меры сложности алгоритмов. Сложность задачи. Массовые и индивидуальные задачи.
- •77. Асимптотическая сложность, порядок сложности. Сложность в среднем и в худшем случае.
- •78. Трудоемкость алгоритмов. Классификация алгоритмов по виду функции трудоёмкости
- •79. Методики перехода к временным оценкам трудоёмкости алгоритмов. Пооперационный анализ. Метод Гиббсона. Метод прямого определения среднего времени.
- •1) Пооперационный анализ
- •2) Метод Гиббсона
- •3) Метод прямого определения среднего времени
- •80. Сложность и кодирование. Сложность и архитектура машины.
- •81. Полиномиальный алгоритм. Легко- и трудноразрешимые задачи, классы задач p и np.
- •82. Полиномиальная сводимость и np-полнота. Np-полные задачи. Примеры np-полных задач. Теорема Кука. Примеры практически значимых np-полных задач.
12. Алгебра логики. Функции алгебры логики. K-значные логики.
Логические формулы рассматриваются как алгебраические выражения, которые можно преобразовывать по правилам, реализующим логические законы.
Алгебра логики — раздел математической логики, изучающий строение сложных логических высказываний (формул) и способы установления их истинности с помощью алгебраических методов.
Алгебра логики — раздел математической логики, изучающий логические операции над высказываниями. Предполагается, что они могут быть только истинными или ложными.
Формулы алгебры логики состоят из логических переменных, логических операций, скобок. Каждая формула задает логическую функцию — функцию от логических переменных, которая может принимать только 2 значения. Рассмотрим двухэлементное множество B и двоичные переменные, принимающие значения из B. Алгебра, образованная множеством B вместе со всеми возможными операциями на нем, называется алгеброй логики.
Функция
алгебры логики (от
переменных, логическая ф-ия) — n-арная
операция на
,
т. е.
.
Множество
всех логических функций обозначается
,
множество всех логических функций n
переменных —
.
Алгебра, образованная k-элементным
множеством вместе со всеми операциями
на нем, называется алгеброй k-значной
логики, а n-арные
операции на k-элементном
множестве называются k-значными
логическими функциями n
переменных; множество всех k-значных
логических функций обозначается Pk.
13. Способы задания функций алгебры логики. Единичные и нулевые наборы функций алгебры логики. Фиктивные (несущественные) переменные.
Функция алгебры логики (от переменных, логическая ф-ия) — n-арная операция на , т. е. .
Логическая функция — зависимость поведения выходных логических величин от изменения входных.
Способы задания функций алгебры логики: таблицы истинности, таблицы Кэли, формулы.
Таблица
истинности (ТИ) — таблица, описывающая
логические функции (
).
В левой части — перечислены все наборы
значений переменных, в правой части —
значения функций на этих наборах. ТИ
содержит
строк,
— количество переменных (входов),
— все комбинации значений (состояний)
переменных. ТИ содержит
столбцов,
— количество функций (выходов).
Часто ТИ описывает только одну функцию
(
).
Единичный
набор — на котором функция
,
единичное множество — множество
единичных наборов.
Нулевой
набор — на котором функция
,
нулевое множество — множество
нулевых наборов.
Фиктивная
переменная — переменная
в
,
если
при любых значениях остальных переменных.
В этом случае
зависит от
переменной.
Таблица Кэли (ТК) — (в общей алгебре) таблица, описывающая структуру конечных алгебраических систем с одной бинарной операцией. Названа в честь английского математика Артура Кэли.
Размерность
ТК:
— содержит
строк и
столбец. Заглавная
строка таблицы заполняется в некотором
порядке (обычно по возрастанию) символами,
обозначающими различные элементы
алгебры, теми же символами и в том же
порядке заполняется заглавный столбец.
Если на -м месте в заглавном столбце
стоит символ
и на
-м
месте в заглавной строке —
символ
,
то на пересечении
-й
строки и
-го
столбца записывается символ, обозначающий
произведение
.
Таблица умножения в десятичной системе:
|
0 |
1 |
2 |
3 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
2 |
3 |
2 |
0 |
2 |
4 |
6 |
3 |
0 |
3 |
6 |
9 |
14