
- •Предмет технической термодинамике и ее методы.
- •2.Основные понятия технической термодинамики. Характерные представители рабочих тел.
- •3.Термические параметры состояния состояние рабочего тела ( абсолютная температура, удельный объем, абсолютная давление)
- •4. Понятие идеального газа и реального газа. Уравнение состояния.
- •5 Теплота и работа как форма передачи энергии. Графическое определение теплоты и работы в координатах t-s, p-V.
- •7. Первый закон термодинамики в общем виде для закрытой термомеханической системы. Его аналитическое выражение и основные формулировки.
- •8. Первый закон термодинамики для изохорного , адиабатного и изотермического процессов.
- •9. Массовая объемная и мольная теплоемкость, взаимосвязь между ними.
- •10Зависимость теплоемкости от температуры. Определение средней теплоемкости идеальных газов.
- •11Зависимость теплоемкости от характера процесса. Уравнение Майера для идеального газа.
- •12. Основные определения и понятия газовой смеси. Теплоемкость смеси газов.
- •13. Общие свойства газовой смеси. Модификатор газовой смеси.
- •14. Сущность основные формулировки второго закона термодинамики и его аналитическое выражение.
- •15. Прямые и обратные циклы Карно, термический кпд и холодильный коэффициент циклов.
- •16 Понятие и физическая сущность энтропии.
- •17. Уравнение политропного процесса. Показатель поли тропы изохорного, изотермического, изобарного и адиабатного процессов, их уравнение.
- •19. Дать определение водяного пара в различных его состояниях.
- •20. Диаграмма h-s процессы водяного пара.
- •21. Истечение газов и паров. Понятие о сопловом и диффузорном течении газа. Уравнение первого закона термодинамики для потока.
- •22. Дросселирование газов и паров, сущность процесса, процесс дросселирования в h-s диаграмме, практическое использование процесса дросселирования.
- •23. Основные положения теплопроводности, понятие изотермической поверхности, градиента температур. Основной закон теплопроводности- Закон Фурье.
- •24 . Теплопроводность при стационарном режиме. Теплопроводность однослойной и многослойной стенки. График изменения температур в однослойной и многослойной стенках.
- •25. Основы теории конвективного теплообмена. Физическая сущность конвективного теплообмена. Основной закон конвективного теплообмена.
- •26. Определения коэффициента теплоотдачи. Критерии подобия. Уравнение подобия для свободного движения теплоносителя в общем виде.
- •27 . Основы теории теплообмена излучением. Определение теплообмена излучением. Закон Стефана- Больцмана. Коэффициенты поглощения, отражения, пропускания.
- •28. Закон Стефана-Больцмана. Теплообмен излучением между двумя плоскими параллельными поверхностями. Приведенная степень чистоты системы тел.
- •29. Теплопередача. Понятия коэффициента теплопередачи, термического сопротивления теплопередачи, температурного напора. Уравнение теплопередачи.
- •30 Основы теплового расчета теплообменника с прямоточной и противоточной схемой движения носителя.
- •31 Характеристика топлива (высшая и низшая теплота сгорания, элементарный состав, выход летучих горючих).
- •32.Расход топлива для котельной предприятия. Влияние характеристик производимого пара на расход топлива. Условное топливо.
- •33. Назначение и классификация паровых котлов , используемых на предприятиях отрасли.
- •34. Устройство и принцип действия паровых котлов.
- •35. Назначение и принцип действия основных элементов парового котла.
- •36. Назначение и принцип действия вспомогательного оборудования котельной установки.
- •37. Тепловой баланс котельной установки. Составляющие уравнения теплового баланса.
- •38.Полезноиспользуемая теплота. Коэффициент полезного действия котла по прямому и обратному балансам.
- •39. Дать физическую интерпретацию потерь теплоты с уходящими газами и химическим недожогом.
- •40. Принципы обеспечения безопасности работы паровых котлов.
- •41. Схемы теплоснабжения предприятий отрасли. Основные теплоносители, используемые на предприятии, их характеристики.
- •42. Что такое холодильная техника и холодильная технология. Основы холодильной обработки и хранения продуктов.
- •43. Физические принципы получения низких температур.
- •49. Способы охлаждения камер хранения.
- •50. Характеристика и свойства холодильных агентов.
38.Полезноиспользуемая теплота. Коэффициент полезного действия котла по прямому и обратному балансам.
Полное количество полезно используемой теплоты для производства водяного пара расходуется в общем случае на подогрев воды, поступающей в котел, до ее кипения, испарения и перегрев пара в пароперегревателе. При использовании теплоты продувки в системе подготовки химически очищенной воды в полезное тегаювосп-риятие включается и количество теплоты, уносимое из котла с непрерывной продувкой. Вычисление количества полезно используемой теплоты, МДж/кг, ведут по формуле: Qпол = D (hп.п - hп.в ) + Dпр (hк.в - hп.в ) / B где D, Dпр — соответственно расходы перегретого пара и котловой воды на продувку, кг/с; hп.п, hп.в, hк.в — соответственно энтальпии перегретого пара, питательной воды, кипящей воды в барабане котла, МДж/кг; B — расход топлива, кг/с (для мазута) или м3/с (для газа). Полезно используемая теплота при нагреве воды в водогрейном котле, МДж/кг мазута или МДж/м3 газа: Qпол = Gв (hв'' - hв') / B
где GB — расход воды, кг/с; hв'' и hв' — энтальпии воды на входе и выходе из котельного агрегата соответственно, МДж/кг
Коэффициентом полезного действия отопительного котла называют отношение полезной теплоты, израсходованной на выработку пара (или горячей воды), к располагаемой теплоте отопительного котла. Не вся полезная теплота, выработанная котельным агрегатом, направляется потребителям, часть теплоты расходуется на собственные нужды. С учетом этого различают КПД отопительного котла по выработанной теплоте (КПД-брутто) и по отпущенной теплоте (КПД-нетто). По разности выработанной и отпущенной теплот определяется расход на собственные нужды. На собственные нужды расходуется не только теплота, но и электрическая энергия (например, на привод дымососа, вентилятора, питательных насосов, механизмов топливоподачи), т.е. расход на собственные нужды включает в себя расход всех видов энергии, затраченных на производство пара или горячей воды. В итоге КПД-брутто отопительного котла характеризует степень его технического совершенства, а КПД-нетто — коммерческую экономичность. Для котельного агрегата КПД-брутто, %: по уравнению прямого баланса:
ηбр = 100 Qпол / Qрр где Qпол — количество полезно используемой теплоты, МДж/кг; Qрр — располагаемая теплота, МДж/кг; по уравнению обратного баланса: ηбр = 100 - (qу.г + qх.н + qн.о) где qу.г, qх.н, qн.о — относительные потери теплоты с уходящими газами, от химической неполноты сгорания топлива, от наружного охлаждения. Тогда КПД-нетто отопительного котла по уравнению обратного баланса ηнетто = ηбр - qс.н где qс.н — расход энергии на собственные нужды, %. Определение КПД по уравнению прямого баланса проводят преимущественно при отчетности за отдельный период (декада, месяц), а по уравнению обратного баланса — при испытании отопительного котла. Вычисление КПД отопительного котла по обратному балансу значительно точнее, так как погрешности при измерении потерь теплоты меньше, чем при определении расхода топлива.
Зависимость
КПД котла ηк
от его нагрузки (D/Dном)
100
qу.г, qх.н, qн.о — потери теплоты с уходящими газами, от химической и механической неполноты сгорания, от наружного охлаждения и суммарные потер.
Таким образом, для повышения эффективности отопительного котла недостаточно стремиться к снижению тепловых потерь; необходимо также всемерно сокращать расходы тепловой и электрической энергии на собственные нужды, которые составляют в среднем 3...5% теплоты, располагаемой котельным агрегатом. Изменение КПД отопительного котла зависит от его нагрузки. Для построения этой зависимости (рис.) нужно от 100% вычесть последовательно все потери котельного агрегата, которые зависят от нагрузки, т.е. qу.г, qх.н, qн.о. Как видно из рисунок, КПД отопительного котла при определенной нагрузке имеет максимальное значение. Работа котла на этой нагрузке наиболее экономична.