
- •Учебное пособие теоретические основы электротехники
- •Часть I
- •Теория линейных электрических цепей
- •Оглавление.
- •Глава 1. Линейные электрические цепи постоянного
- •Глава 2. Электрические цепи однофазного синусоидального тока .. ………………………………………………………………….35
- •Глава 3. Комплексный метод расчета электрических цепей при установившемся синусоидальном токе……………………………46
- •Глава 4. Резонансные явления в линейных электрических цепях.…. ……………………………………………………………….61
- •Глава 5. Расчет электрических цепей при наличии в них магнитосвязанных катушек………………………………………….74
- •Глава6. Расчёт трёхфазных цепей…………….………….86
- •Глава 7. Расчет электрических цепей при несинусоидальных периодических эдс, напряжениях и токах………………..............96
- •Глава 8. Четырехполюсники. Частотные и временные характеристики..
- •8.5. Определение параметров составных четырехполюсников. Каскадное, последовательное и параллельное соединение четырехполюсников ………..
- •Глава9. Электрические фильтры……………………………………
- •Введение
- •Физические основы электротехники в.1. Связь теории электрических и магнитных цепей с теорией электромагнитного поля
- •В.2. Электрическое и магнитное поле
- •В.З. Электрическое напряжение, электрический потенциал, электродвижущая сила, источник эдс, электрическая емкость, конденсатор
- •В .5. Электрические токи и магнитные потоки в различных физических средах
- •В.6. Основные уравнения электромагнитного поля
- •Глава 1. Линейные электрические цепи постоянного тока
- •Определения
- •1.2. Источники электрической энергии
- •1.3. Основные преобразования схем, используемые при анализе электрических цепей
- •1.4. Законы электрических цепей
- •1.5. Расчет электрической цепи по законам Кирхгофа
- •1.6. Метод контурных токов
- •1.6.1. Алгоритм расчета
- •1.7. Метод узловых потенциалов
- •1.8. Принцип наложения и метод наложения
- •1.9. Метод эквивалентного генератора
- •2. Определим внутреннее сопротивление (рис. 1.27), устранив источник электрической энергии в исходной схеме
- •2. Замеряем ток короткого замыкания Iкз в режиме, когда зажимы активного двухполюсника замкнуты накоротко, как это показано на рис. 1.28. Определяем внутреннее сопротивление
- •1.10. Передача энергии от активного двухполюсника нагрузке
- •1.11. Метод пропорциональных величин
- •1.12. Теорема о линейных соотношениях
- •1.13. Теорема компенсации
- •1.14. Энергетический баланс в электрических цепях
- •Глава 2. Электрические цепи однофазного синусоидального тока
- •2.1. Синусоидальный ток и основные характеризующие его величины
- •2.2. Действующее и среднее значения синусоидально изменяющейся величины
- •2.3.Коэффициент амплитуды и коэффициент формы
- •2.4. Изображение синусоидальных токов, напряжений, эдс с помощью вращающихся векторов. Векторная диаграмма
- •2.5. Активное сопротивление в цепи синусоидального тока
- •2.6. Индуктивность в цепи синусоидального тока
- •2.7. Емкость в цепи синусоидального тока
- •2.8. Установившийся синусоидальный ток в цепи с последовательным соединением участков r, l, c
- •2.9. Установившийся синусоидальный ток в цепи с параллельным соединением участков g, l и c
- •Глава3. Комплексный метод расчета электрических цепей при установившемся синусоидальном токе
- •3.1. Комплексные числа
- •3.2. Изображение синусоидально изменяющихся величин
- •3.3. Выражение для производной
- •3.4. Выражение для интеграла
- •3.5. Алгебраизация уравнений
- •3.6. Закон Ома для цепи синусоидального тока.
- •3.7. Комплексная проводимость
- •3.8. Треугольник сопротивлений и треугольник проводимостей
- •3.9. Законы Кирхгофа в комплексной форме
- •3.10. Активная, реактивная и полная мощности
- •3.11. Расчет сложных электрических цепей комплексным методом
- •Глава 4. Резонансные явления в линейных электрических цепях
- •4.1. Резонанс напряжений
- •4.2. Резонанс токов
- •4.3. Резонанс в разветвленных цепях
- •4.4. Резонанс в цепях без потерь (чисто реактивные цепи)
- •Глава 5. Расчет электрических цепей при наличии в них магнитосвязанных катушек
- •5.1. Определения. Физическая модель
- •5.2. Расчет последовательного соединения двух магнитосвязанных катушек
- •5.3. Расчет разветвленных цепей при наличии в них магнитосвязанных катушек
- •5.4. «Развязывание» магнитосвязанных цепей
- •5.5. Трансформатор с линейными характеристиками
- •Глава 6. Расчёт трёхфазных цепей
- •6.1. Трехфазная система эдс
- •6.2. Общие положения и допущения при расчете трехфазных цепей
- •6.3. Расчет соединения звезда–звезда с нулевым проводом
- •6.4. Расчет соединения звезда–звезда без нулевого провода
- •6.5. Расчет соединения треугольник–треугольник
- •6.6. Активная, реактивная и полная мощности трёхфазной цепи
- •6.7. Измерение активной мощности в трёхфазной цепи
- •Глава 7. Расчет электрических цепей при несинусоидальных периодических эдс, напряжениях и токах
- •7.1. Алгоритм расчета
- •7.2. Представление периодической несинусоидальной функции в виде ряда Фурье
- •7.3. Гармонический состав кривой в некоторых случаях симметрии
- •7.4. Зависимость формы кривой тока от характера цепи при несинусоидальном напряжении
- •7.5. Действующее значение периодических несинусоидальных токов, напряжений, эдс
- •7.6. Определение мощности в электрических цепях с периодическими несинусоидальными токами, напряжениями, эдс
- •Глава 8. Четырехполюсники. Частотные и временные характеристики
- •8.1. Основные уравнения четырехполюсников. Частотные характеристики. Фильтры
- •Глава 8. Четырехполюсники. Частотные и временные характеристики
- •8.1. Уравнения и параметры четырехполюсников
- •8.2. Эквивалентные схемы четырехполюсников
- •8.3. Обратимые, симметричные и вырожденные четырехполюсники
- •8.4. Определение параметров четырехполюсника экспериментальным и расчетным путем
- •8.5. Определение параметров составных четырехполюсников. Каскадное, последовательное и параллельное соединение четырехполюсников
- •8.6. Входные и передаточные функции нагруженных четырехполюсников
- •8.7. Характеристические параметры обратимых четырехполюсников
- •8.8. Уравнения и характеристические параметры симметричных четырехполюсников
- •8.9. Каскадное соединение согласованных четырехполюсников
- •8.10. Уравнения и свойства многополюсников
- •8. 11. Определение параметров четырехполюсников (задачи с решением)
- •9. Электрические фильтры
- •9.1. Общие требования к частотным характеристикам фильтров
- •9.2.Анализ идеального фильтра нижних частот при импульсном воздействии
- •9.3. Частотные свойства пассивного lc- фильтра нижних частот
- •9.4.Требования к частотным характеристикам несогласованных фильтров
- •9.5. Определение параметров пассивного фильтра по требованиям к частотной характеристике
- •9.6. Активные фильтры, их каскадная реализация
- •9.7. Анализ активного звена фильтра нижних частот 2-го порядка
- •9.8. Фильтры других типов. Метод преобразования частоты
- •Глоссарий
- •67. Система прямой последовательности (токов) (симметричная)
- •68. Система электрических токов многофазная
- •69. Система электрических токов многофазная симметричная [несимметричная]
- •Список литературы
9.5. Определение параметров пассивного фильтра по требованиям к частотной характеристике
Рассмотрим процедуру выбора параметров пассивного фильтра по заданным значениям Δα и αmin. При неравномерности амплитудно-частотной характеристики в полосе пропускания Δα = 3 дБ имеем έ = 1. Поэтому = 1/(1 + ω2n), а = 1/[1 + T2n(ω)]. Степень полинома n определяют по заданному значению минимального ослабления в полосе задерживания αmin. Пусть в полосе задерживания при частотах ω > 2,5 задано требование αmin = 20 дБ, отвечающее ослаблению выходного сигнала фильтра в 10 раз. Степень n — порядок фильтра с максимально плоской характеристикой, обеспечивающей такое ослабление, — найдем из условия 1/(1 + 2,52n) ≤0,01, откуда n ≥ 2,51, т. е. требуемая степень ослабления достигается при n = 3. При равноколебательной характеристике фильтра такое же ослабление обеспечивает более простая схема 2-го порядка, поскольку 1/[1 + T22(2,5)] = 1/[1 + (2* 2,52 – 1)2]= 0,0075 < 0,01.
Для определения параметров выбранной схемы фильтра записывают выражение передаточной функции K(jω) рассматриваемой схемы и находят квадрат ее модуля K2(ω2). Приравнивание соответствующих коэффициентов знаменателей передаточной и аппроксимирующей функций K2 и H2 при одинаковых степенях ω2 дает систему алгебраических уравнений, из которой находят параметры элементов схемы фильтра.
Проиллюстрируем этот этап на примере схемы фильтра 3-го порядка, включающей две катушки и конденсатор (рис. 9.7). Выберем ее параметры из условия реализации максимально плоской характеристики.
Сначала
получим выражение для передаточной
функции через параметры цепи. При
нагрузке фильтра на сопротивление Zн
= R для
напряжений на участках цепи имеем
,
а
.
Поэтому токи в ветвях равны:
,
а
.
Напряжение на выходе фильтра определим
как сумму
Подставляя
в это выражение ранее найденные значения
İ1
и
,
получим для передаточной функции
фильтра:
или после приведения подобных членов
.
Квадрат модуля полученной функции запишем в виде
Это выражение приравниваем к квадрату модуля аппроксимирующей функции максимально плоского фильтра 3-го порядка, который при переходе к размерной частоте ω= ω* ωc принимает вид
.
Равенство коэффициентов при соответствующих степенях ω позволяет получить систему трех уравнений для определения трех параметров схемы фильтра L1, L2 и C
Подстановка членов во второе уравнение (показаны стрелками) позволяет найти значение ωc(L1 + L2)/R = 2. Далее из последнего уравнения определяем L1C = 2/ωc2. После подстановки этого значения в первое уравнение получим: ωcL2 = R/2. Далее легко определим все остальные параметры из последних равенств: ωcL1 = 3R/2; 1/(ωcC) = 3R/4.
Очевидно, подобная процедура определения параметров пассивных фильтров высокого порядка весьма громоздка. Однако эти вычисления имеют стандартный характер и выполнены практически для всех разновидностей характеристик и схем фильтров различного порядка. Их результаты, приводимые в форме таблиц в справочной литературе по расчету фильтров, позволяют по заданным требованиям к неравномерности характеристик Δα в полосе пропускания и затуханиюαmin в полосе задерживания определить параметры выбранной схемы.
Задача определения параметров упрощается для активных фильтров с каскадной структурой, в которых передаточные функции отдельных каскадов не влияют друг на друга и нет необходимости рассматривать всю многозвенную структуру фильтра как единое целое.