
- •Учебное пособие теоретические основы электротехники
- •Часть I
- •Теория линейных электрических цепей
- •Оглавление.
- •Глава 1. Линейные электрические цепи постоянного
- •Глава 2. Электрические цепи однофазного синусоидального тока .. ………………………………………………………………….35
- •Глава 3. Комплексный метод расчета электрических цепей при установившемся синусоидальном токе……………………………46
- •Глава 4. Резонансные явления в линейных электрических цепях.…. ……………………………………………………………….61
- •Глава 5. Расчет электрических цепей при наличии в них магнитосвязанных катушек………………………………………….74
- •Глава6. Расчёт трёхфазных цепей…………….………….86
- •Глава 7. Расчет электрических цепей при несинусоидальных периодических эдс, напряжениях и токах………………..............96
- •Глава 8. Четырехполюсники. Частотные и временные характеристики..
- •8.5. Определение параметров составных четырехполюсников. Каскадное, последовательное и параллельное соединение четырехполюсников ………..
- •Глава9. Электрические фильтры……………………………………
- •Введение
- •Физические основы электротехники в.1. Связь теории электрических и магнитных цепей с теорией электромагнитного поля
- •В.2. Электрическое и магнитное поле
- •В.З. Электрическое напряжение, электрический потенциал, электродвижущая сила, источник эдс, электрическая емкость, конденсатор
- •В .5. Электрические токи и магнитные потоки в различных физических средах
- •В.6. Основные уравнения электромагнитного поля
- •Глава 1. Линейные электрические цепи постоянного тока
- •Определения
- •1.2. Источники электрической энергии
- •1.3. Основные преобразования схем, используемые при анализе электрических цепей
- •1.4. Законы электрических цепей
- •1.5. Расчет электрической цепи по законам Кирхгофа
- •1.6. Метод контурных токов
- •1.6.1. Алгоритм расчета
- •1.7. Метод узловых потенциалов
- •1.8. Принцип наложения и метод наложения
- •1.9. Метод эквивалентного генератора
- •2. Определим внутреннее сопротивление (рис. 1.27), устранив источник электрической энергии в исходной схеме
- •2. Замеряем ток короткого замыкания Iкз в режиме, когда зажимы активного двухполюсника замкнуты накоротко, как это показано на рис. 1.28. Определяем внутреннее сопротивление
- •1.10. Передача энергии от активного двухполюсника нагрузке
- •1.11. Метод пропорциональных величин
- •1.12. Теорема о линейных соотношениях
- •1.13. Теорема компенсации
- •1.14. Энергетический баланс в электрических цепях
- •Глава 2. Электрические цепи однофазного синусоидального тока
- •2.1. Синусоидальный ток и основные характеризующие его величины
- •2.2. Действующее и среднее значения синусоидально изменяющейся величины
- •2.3.Коэффициент амплитуды и коэффициент формы
- •2.4. Изображение синусоидальных токов, напряжений, эдс с помощью вращающихся векторов. Векторная диаграмма
- •2.5. Активное сопротивление в цепи синусоидального тока
- •2.6. Индуктивность в цепи синусоидального тока
- •2.7. Емкость в цепи синусоидального тока
- •2.8. Установившийся синусоидальный ток в цепи с последовательным соединением участков r, l, c
- •2.9. Установившийся синусоидальный ток в цепи с параллельным соединением участков g, l и c
- •Глава3. Комплексный метод расчета электрических цепей при установившемся синусоидальном токе
- •3.1. Комплексные числа
- •3.2. Изображение синусоидально изменяющихся величин
- •3.3. Выражение для производной
- •3.4. Выражение для интеграла
- •3.5. Алгебраизация уравнений
- •3.6. Закон Ома для цепи синусоидального тока.
- •3.7. Комплексная проводимость
- •3.8. Треугольник сопротивлений и треугольник проводимостей
- •3.9. Законы Кирхгофа в комплексной форме
- •3.10. Активная, реактивная и полная мощности
- •3.11. Расчет сложных электрических цепей комплексным методом
- •Глава 4. Резонансные явления в линейных электрических цепях
- •4.1. Резонанс напряжений
- •4.2. Резонанс токов
- •4.3. Резонанс в разветвленных цепях
- •4.4. Резонанс в цепях без потерь (чисто реактивные цепи)
- •Глава 5. Расчет электрических цепей при наличии в них магнитосвязанных катушек
- •5.1. Определения. Физическая модель
- •5.2. Расчет последовательного соединения двух магнитосвязанных катушек
- •5.3. Расчет разветвленных цепей при наличии в них магнитосвязанных катушек
- •5.4. «Развязывание» магнитосвязанных цепей
- •5.5. Трансформатор с линейными характеристиками
- •Глава 6. Расчёт трёхфазных цепей
- •6.1. Трехфазная система эдс
- •6.2. Общие положения и допущения при расчете трехфазных цепей
- •6.3. Расчет соединения звезда–звезда с нулевым проводом
- •6.4. Расчет соединения звезда–звезда без нулевого провода
- •6.5. Расчет соединения треугольник–треугольник
- •6.6. Активная, реактивная и полная мощности трёхфазной цепи
- •6.7. Измерение активной мощности в трёхфазной цепи
- •Глава 7. Расчет электрических цепей при несинусоидальных периодических эдс, напряжениях и токах
- •7.1. Алгоритм расчета
- •7.2. Представление периодической несинусоидальной функции в виде ряда Фурье
- •7.3. Гармонический состав кривой в некоторых случаях симметрии
- •7.4. Зависимость формы кривой тока от характера цепи при несинусоидальном напряжении
- •7.5. Действующее значение периодических несинусоидальных токов, напряжений, эдс
- •7.6. Определение мощности в электрических цепях с периодическими несинусоидальными токами, напряжениями, эдс
- •Глава 8. Четырехполюсники. Частотные и временные характеристики
- •8.1. Основные уравнения четырехполюсников. Частотные характеристики. Фильтры
- •Глава 8. Четырехполюсники. Частотные и временные характеристики
- •8.1. Уравнения и параметры четырехполюсников
- •8.2. Эквивалентные схемы четырехполюсников
- •8.3. Обратимые, симметричные и вырожденные четырехполюсники
- •8.4. Определение параметров четырехполюсника экспериментальным и расчетным путем
- •8.5. Определение параметров составных четырехполюсников. Каскадное, последовательное и параллельное соединение четырехполюсников
- •8.6. Входные и передаточные функции нагруженных четырехполюсников
- •8.7. Характеристические параметры обратимых четырехполюсников
- •8.8. Уравнения и характеристические параметры симметричных четырехполюсников
- •8.9. Каскадное соединение согласованных четырехполюсников
- •8.10. Уравнения и свойства многополюсников
- •8. 11. Определение параметров четырехполюсников (задачи с решением)
- •9. Электрические фильтры
- •9.1. Общие требования к частотным характеристикам фильтров
- •9.2.Анализ идеального фильтра нижних частот при импульсном воздействии
- •9.3. Частотные свойства пассивного lc- фильтра нижних частот
- •9.4.Требования к частотным характеристикам несогласованных фильтров
- •9.5. Определение параметров пассивного фильтра по требованиям к частотной характеристике
- •9.6. Активные фильтры, их каскадная реализация
- •9.7. Анализ активного звена фильтра нижних частот 2-го порядка
- •9.8. Фильтры других типов. Метод преобразования частоты
- •Глоссарий
- •67. Система прямой последовательности (токов) (симметричная)
- •68. Система электрических токов многофазная
- •69. Система электрических токов многофазная симметричная [несимметричная]
- •Список литературы
Физические основы электротехники в.1. Связь теории электрических и магнитных цепей с теорией электромагнитного поля
Промышленная революция рубежа XVIII-XIX веков, связанная с практическим освоением явлений электромагнетизма, потребовала массовой подготовки соответствующих инженерных кадров и обусловила необходимость создания специальных учебных дисциплин для подготовки нового инженерного корпуса. Базисной дисциплиной в образовании инженеров электротехников, электромехаников, электротехнологов и электроэнергетиков стала дисциплина «Теоретические основы электротехники» - сокращенно ТОЭ. Предметом изучения этой дисциплины стали электромагнитные явления и процессы в устройствах и системах электротехники, электроэнергетики, электрофизики. Помимо самостоятельной ценности, ТОЭ дает фундаментальную основу знаний, единый язык и методологию, необходимую для усвоения материала других дисциплин в инженерном образовании по названным специализациям.
Начиналась дисциплина ТОЭ с двух курсов лекций - «Теория электрических и магнитных явлений», прочитанного В.Ф. Миткевичем в 1904 г. в Политехническом институте (С.-Петербург) и «Теория переменных токов», прочитанного в 1905 г. К.А. Кругом в Московском высшем техническом училище. В этих курсах, по сути, были сформулированы основные положения двух разделов ТОЭ - теории электромагнитного поля и теории электрических и магнитных цепей. Со времени появления этих курсов в учебные программы высших учебных заведений, занимающихся подготовкой инженеров названных специализаций, неизменно входит курс ТОЭ или отдельные его части, как, например, теория электрических и магнитных цепей. Теория электрических и магнитных цепей имеет исключительно большое значение для практики, а в методическом отношении достаточно самостоятельна. Однако, являясь частью ТОЭ, она в своей основе содержит ряд допущений и предположений, связанных с теорией электромагнитного поля; первичные ее понятия также описываются с использованием категорий электромагнитного поля. Поэтому в настоящем введении описываются необходимые для полноценного восприятия последующих глав книги сведения из теории электромагнитного поля, хотя и в самом минимальном объеме, лишь частично дополняющие сведения из соответствующего раздела школьного или вузовского курса физики. Подобное изложение физических основ электротехники призвано сыграть роль фундамента книги, и начать его необходимо со знакомства с основными понятиями курса ТОЭ, а именно понятиями электромагнитного поля и электрической и магнитной цепи.
Электромагнитное поле - это особый вид материи (вещества), отличающийся непрерывным распределением в пространстве, обнаруживающий дискретность структуры (кванты излученного электромагнитного поля) и характеризующийся способностью оказывать на заряженные частицы силовое воздействие, зависящее от их скорости.
Заметим, что всякая заряженная частица окружена электромагнитным полем, составляющим с ней одно целое. Однако электромагнитное поле может существовать и в свободном, отдельном от заряженных частиц состоянии в виде движущихся со скоростью, близкой к скорости света, фотонов или электромагнитных волн. Электромагнитное поле является носителем определенного количества энергии, которая способна преобразовываться в другие виды энергии - механического движения, тепловую и т.д. Являясь носителем энергии, это поле обладает и определенной массой, которая может быть определена из общей связи Е = mc2 полной энергии Е и полной массы m, причем с = З*108 м/с - скорость света в пустоте. Следует заметить, что плотность этой массы из-за большого значения с2 в обычных электромагнитных полях весьма невелика. Поэтому на практике этой характеристикой поля обычно не интересуются, сосредотачивая внимание на силовой стороне проявлений энергии поля. В тех случаях, когда электромагнитное поле локализовано в совокупности устройств, предназначенных для прохождения электрических токов, говорят об электрических цепях. Строгие определения электрическим и магнитным цепям можно дать лишь позднее, когда будут введены, в частности, понятия токов, магнитных потоков и т.д., здесь же обратим внимание на отмеченную реализацию электромагнитных процессов в специальных устройствах в случаях, когда говорят об электрических и магнитных цепях.