
- •Учебное пособие теоретические основы электротехники
- •Часть I
- •Теория линейных электрических цепей
- •Оглавление.
- •Глава 1. Линейные электрические цепи постоянного
- •Глава 2. Электрические цепи однофазного синусоидального тока .. ………………………………………………………………….35
- •Глава 3. Комплексный метод расчета электрических цепей при установившемся синусоидальном токе……………………………46
- •Глава 4. Резонансные явления в линейных электрических цепях.…. ……………………………………………………………….61
- •Глава 5. Расчет электрических цепей при наличии в них магнитосвязанных катушек………………………………………….74
- •Глава6. Расчёт трёхфазных цепей…………….………….86
- •Глава 7. Расчет электрических цепей при несинусоидальных периодических эдс, напряжениях и токах………………..............96
- •Глава 8. Четырехполюсники. Частотные и временные характеристики..
- •8.5. Определение параметров составных четырехполюсников. Каскадное, последовательное и параллельное соединение четырехполюсников ………..
- •Глава9. Электрические фильтры……………………………………
- •Введение
- •Физические основы электротехники в.1. Связь теории электрических и магнитных цепей с теорией электромагнитного поля
- •В.2. Электрическое и магнитное поле
- •В.З. Электрическое напряжение, электрический потенциал, электродвижущая сила, источник эдс, электрическая емкость, конденсатор
- •В .5. Электрические токи и магнитные потоки в различных физических средах
- •В.6. Основные уравнения электромагнитного поля
- •Глава 1. Линейные электрические цепи постоянного тока
- •Определения
- •1.2. Источники электрической энергии
- •1.3. Основные преобразования схем, используемые при анализе электрических цепей
- •1.4. Законы электрических цепей
- •1.5. Расчет электрической цепи по законам Кирхгофа
- •1.6. Метод контурных токов
- •1.6.1. Алгоритм расчета
- •1.7. Метод узловых потенциалов
- •1.8. Принцип наложения и метод наложения
- •1.9. Метод эквивалентного генератора
- •2. Определим внутреннее сопротивление (рис. 1.27), устранив источник электрической энергии в исходной схеме
- •2. Замеряем ток короткого замыкания Iкз в режиме, когда зажимы активного двухполюсника замкнуты накоротко, как это показано на рис. 1.28. Определяем внутреннее сопротивление
- •1.10. Передача энергии от активного двухполюсника нагрузке
- •1.11. Метод пропорциональных величин
- •1.12. Теорема о линейных соотношениях
- •1.13. Теорема компенсации
- •1.14. Энергетический баланс в электрических цепях
- •Глава 2. Электрические цепи однофазного синусоидального тока
- •2.1. Синусоидальный ток и основные характеризующие его величины
- •2.2. Действующее и среднее значения синусоидально изменяющейся величины
- •2.3.Коэффициент амплитуды и коэффициент формы
- •2.4. Изображение синусоидальных токов, напряжений, эдс с помощью вращающихся векторов. Векторная диаграмма
- •2.5. Активное сопротивление в цепи синусоидального тока
- •2.6. Индуктивность в цепи синусоидального тока
- •2.7. Емкость в цепи синусоидального тока
- •2.8. Установившийся синусоидальный ток в цепи с последовательным соединением участков r, l, c
- •2.9. Установившийся синусоидальный ток в цепи с параллельным соединением участков g, l и c
- •Глава3. Комплексный метод расчета электрических цепей при установившемся синусоидальном токе
- •3.1. Комплексные числа
- •3.2. Изображение синусоидально изменяющихся величин
- •3.3. Выражение для производной
- •3.4. Выражение для интеграла
- •3.5. Алгебраизация уравнений
- •3.6. Закон Ома для цепи синусоидального тока.
- •3.7. Комплексная проводимость
- •3.8. Треугольник сопротивлений и треугольник проводимостей
- •3.9. Законы Кирхгофа в комплексной форме
- •3.10. Активная, реактивная и полная мощности
- •3.11. Расчет сложных электрических цепей комплексным методом
- •Глава 4. Резонансные явления в линейных электрических цепях
- •4.1. Резонанс напряжений
- •4.2. Резонанс токов
- •4.3. Резонанс в разветвленных цепях
- •4.4. Резонанс в цепях без потерь (чисто реактивные цепи)
- •Глава 5. Расчет электрических цепей при наличии в них магнитосвязанных катушек
- •5.1. Определения. Физическая модель
- •5.2. Расчет последовательного соединения двух магнитосвязанных катушек
- •5.3. Расчет разветвленных цепей при наличии в них магнитосвязанных катушек
- •5.4. «Развязывание» магнитосвязанных цепей
- •5.5. Трансформатор с линейными характеристиками
- •Глава 6. Расчёт трёхфазных цепей
- •6.1. Трехфазная система эдс
- •6.2. Общие положения и допущения при расчете трехфазных цепей
- •6.3. Расчет соединения звезда–звезда с нулевым проводом
- •6.4. Расчет соединения звезда–звезда без нулевого провода
- •6.5. Расчет соединения треугольник–треугольник
- •6.6. Активная, реактивная и полная мощности трёхфазной цепи
- •6.7. Измерение активной мощности в трёхфазной цепи
- •Глава 7. Расчет электрических цепей при несинусоидальных периодических эдс, напряжениях и токах
- •7.1. Алгоритм расчета
- •7.2. Представление периодической несинусоидальной функции в виде ряда Фурье
- •7.3. Гармонический состав кривой в некоторых случаях симметрии
- •7.4. Зависимость формы кривой тока от характера цепи при несинусоидальном напряжении
- •7.5. Действующее значение периодических несинусоидальных токов, напряжений, эдс
- •7.6. Определение мощности в электрических цепях с периодическими несинусоидальными токами, напряжениями, эдс
- •Глава 8. Четырехполюсники. Частотные и временные характеристики
- •8.1. Основные уравнения четырехполюсников. Частотные характеристики. Фильтры
- •Глава 8. Четырехполюсники. Частотные и временные характеристики
- •8.1. Уравнения и параметры четырехполюсников
- •8.2. Эквивалентные схемы четырехполюсников
- •8.3. Обратимые, симметричные и вырожденные четырехполюсники
- •8.4. Определение параметров четырехполюсника экспериментальным и расчетным путем
- •8.5. Определение параметров составных четырехполюсников. Каскадное, последовательное и параллельное соединение четырехполюсников
- •8.6. Входные и передаточные функции нагруженных четырехполюсников
- •8.7. Характеристические параметры обратимых четырехполюсников
- •8.8. Уравнения и характеристические параметры симметричных четырехполюсников
- •8.9. Каскадное соединение согласованных четырехполюсников
- •8.10. Уравнения и свойства многополюсников
- •8. 11. Определение параметров четырехполюсников (задачи с решением)
- •9. Электрические фильтры
- •9.1. Общие требования к частотным характеристикам фильтров
- •9.2.Анализ идеального фильтра нижних частот при импульсном воздействии
- •9.3. Частотные свойства пассивного lc- фильтра нижних частот
- •9.4.Требования к частотным характеристикам несогласованных фильтров
- •9.5. Определение параметров пассивного фильтра по требованиям к частотной характеристике
- •9.6. Активные фильтры, их каскадная реализация
- •9.7. Анализ активного звена фильтра нижних частот 2-го порядка
- •9.8. Фильтры других типов. Метод преобразования частоты
- •Глоссарий
- •67. Система прямой последовательности (токов) (симметричная)
- •68. Система электрических токов многофазная
- •69. Система электрических токов многофазная симметричная [несимметричная]
- •Список литературы
Глава 6. Расчёт трёхфазных цепей
Многофазной системой электрических цепей называют совокупность электрических цепей, в которых действуют синусоидальные ЭДС одной и той же частоты, сдвинутые друг относительно друга по фазе, создаваемые общими источником энергии (ГОСТ Р52002-2003)
Многофазной цепью называют многофазную систему электрических цепей, в которой отдельные фазы электрически соединены друг с другом (ГОСТ Р52002-2003). В частности, при числе фаз многофазной системы, равной трем, будем иметь трехфазную цепь. Различают симметричную и несимметричную многофазную цепь.
Многофазная электрическая цепь, в которой комплексные электрические сопротивления составляющих ее фаз одинаковы, называют симметричной многофазной электрической цепью (ГОСТ Р52002-2003).
6.1. Трехфазная система эдс
Под трёхфазной симметричной системой ЭДС понимают совокупность трех синусоидальных ЭДС одинаковой частоты и амплитуды, сдвинутых по фазе относительно друг друга на 120 ° (рис. 6.1).
Рис. 6.2
Соответственно, для действующих ЭДС в комплексной форме можно
записать
и
изобразить на комплексной плоскости
(рис. 6.2).
6.2. Общие положения и допущения при расчете трехфазных цепей
Трехфазные цепи являются разновидностью цепей синусоидального тока, и поэтому их расчет производится теми же методами и приёмами, которые присущи цепям однофазного синусоидального тока. Для анализа трехфазных цепей применим комплексный (символический) метод расчета, могут строиться векторные и топографические диаграммы.
Для анализа трехфазных цепей введем два допущения:
1) система ЭДС трехфазного генератора симметрична;
2) все источники ЭДС имеют бесконечно большую мощность.
Эти допущения сводятся к тому, что синусоидальные напряжения на зажимах трехфазного генератора симметричны при любой нагрузке.
6.3. Расчет соединения звезда–звезда с нулевым проводом
Предположим сейчас и будем считать в дальнейшем, что сопротивление проводов, соединяющих источник с нагрузкой, равно нулю.
В этом случае в соединении звезда-звезда с нулевым проводом образуются три обособленных контура (рис. 6.3). Токи в этих контурах можно определить по закону Ома
где
–
линейные токи источника, а
–
фазные токи нагрузки, соответственно,
фазы a,
b, c.
Ток
в нулевом проводе равен
Напряжение
между линейным проводом и нулевым узлом
–
фазное напряжение:
Напряжение
между линейными проводами
–
линейное напряжение:
Рис. 6.3
При соединении звезда–звезда с нулевым проводом справедливы следующие равенства:
Между
модулями фазных и линейных токов и
напряжений справедливы следующие
соотношения:
Рассмотрим два случая: случай симметричной нагрузки и случай несимметричной нагрузки.
6.3.1. Симметричная нагрузка (цепь)
Симметричная многофазная (трёхфазная) цепь – это цепь, в которой комплексные сопротивления составляющих её фаз одинаковы (ГОСТ Р52002-2003).
Рис. 6.4
На
рис. 6.4 представлена векторная диаграмма
напряжений на источнике и нагрузке.
Векторная диаграмма токов построена
для симметричной цепи, имеющей активный
характер. При этом
и,
следовательно, нулевой провод может
быть устранён из цепи без изменения
режима её работы. Аналогичная ситуация
наблюдается и для симметричной цепи с
активно-реактивной нагрузкой,
6.3.2. Несимметричная нагрузка (цепь)
Если
нагрузка несимметрична, т. е
то появляется ток в нулевом проводе:
как
это, например, показано на векторной
диаграмме (рис. 6.5).
Рис. 6.5
Сопротивления фаз равны по величине, но имеют различный характер: в фазе a – активная нагрузка, в фазе b – индуктивная нагрузка, а в фазе c – емкостная нагрузка.