Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по Объектно-ориентированному анализу.doc
Скачиваний:
51
Добавлен:
20.05.2014
Размер:
2.86 Mб
Скачать

Контрастирование и нормализация сети

В последние годы широкое распространение получили различные методы контрастирования или скелетонизации нейронных сетей. В ходе процедуры контрастирования достигается высокая степень разреженности синаптической карты нейронной сети, так как большинство связей получают нулевые веса (см. например [47, 100, 303. 304]).

Очевидно, что при такой степени разреженности ненулевых параметров проводить вычисления так, как будто структура сети не изменилась, неэффективно. Возникает потребность в процедуре нормализации сети, то есть фактического удаления нулевых связей из сети, а не только из обучения. Процедура нормализации состоит из двух этапов:

  1. Из сети удаляются все связи, имеющие нулевые веса и исключенные из обучения.

  1. Из сети удаляются все подсети, выходные сигналы которых не используются другими подсетями в качестве входных сигналов и не являются выходными сигналами сети в целом.

В ходе нормализации возникает одна трудность: если при описании нейронной сети все нейроны одинаковы, и можно описать нейрон один раз, то после удаления отконтрастированных связей нейроны обычно имеют различную структуру. Компонент сеть должен отслеживать ситуации, когда два блока исходно одного и того же типа уже не могут быть представлены в виде этого блока с различными параметрами. В этих случаях компонент сеть порождает новый тип блока. Правила порождения имен блоков приведены в описании выполнения запроса на нормализацию сети.

Примеры сетей и алгоритмов их обучения

В этом разделе намеренно допущено отступление от общей методики – не смешивать разные компоненты. Это сделано для облегчения демонстрации построения нейронных сетей обратного распространения, позволяющих реализовать на них большинство известных алгоритмов обучения нейронных сетей.

Сети Хопфилда

Классическая сеть Хопфилда [312], функционирующая в дискретном времени, строится следующим образом. Пусть – набор эталонных образов. Каждый образ, включая и эталоны, имеет видn-мерного вектора с координатами, равными нулю или единице. При предъявлении на вход сети образа x сеть вычисляет образ, наиболее похожий на x. В качестве меры близости образов выберем скалярное произведение соответствующих векторов. Вычисления проводятся по следующей формуле: . Эта процедура выполняется до тех пор, пока после очередной итерации не окажется, что. Векторx, полученный в ходе последней итерации, считается ответом. Для нейросетевой реализации формула работы сети переписывается в следующем виде:

или

где .

На рис. 17 приведена схема сети Хопфилда [312] для распознавания четырехмерных образов. Обычно сети Хопфилда [312] относят к сетям с формируемой синаптической картой. Однако, используя разработанный в первой части главы набор элементов, можно построить обучаемую сеть. Для построения такой сети используем «прозрачные» пороговые элементы. Ниже приведен алгоритм обучения сети Хопфилда [312].

  1. Положим все синаптические веса равными нулю.

  1. Предъявим сети первый эталон  и проведем один такт функционирования вперед, то есть цикл будет работать не до равновесия, а один раз (см. рис. 17б).

  1. Подадим на выход каждого нейрона соответствующую координату вектора  (см. рис. 17в). Поправка, вычисленная на j-ом синапсе i-го нейрона, равна произведению сигнала прямого функционирования на сигнал обратного функционирования. Поскольку при обратном функционировании пороговый элемент прозрачен, а сумматор переходит в точку ветвления, то поправка равна .

  1. Далее проведем шаг обучения с параметрами обучения, равными единице. В результате получим .

Повторяя этот алгоритм, начиная со второго шага, для всех эталонов получим , что полностью совпадает с формулой формирования синаптической карты сети Хопфилда[312], приведенной в начале раздела.