Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭВМ лекции 2006.doc
Скачиваний:
186
Добавлен:
20.05.2014
Размер:
3.7 Mб
Скачать

Базовые команды

Процессор выполняет каждую команду (инструкцию) за несколько шагов (тактов):

  1. Выборка очередной команды (ЦП вызывает команду из ОП и переносит ее в регистр команд);

  2. Формирование адреса следующей команды (меняется значение счетчика команд);

  3. Дешифрация команды (определяется тип вызванной, текущей команды);

  4. Выборка операндов (если команда использует «слово» из памяти, определяет где находится это слово и вызывает его; переносит слово из ОП в один из регистров (регистр данных));

  5. Выполнение операции (выполняет команду (АЛУ));

  6. Запись результата (заносит результат в промежуточный буфер, регистр – аккумулятор);

  7. Переходит к шагу 1 или заканчивает выполнение программы «ОСТАНОВ».

Такая последовательность шагов: выборка – декодирование – исполнение является основой работы всех компьютеров. Описание работы ЦП можно представить, или имитировать, в виде программы-интерпретатора на языкеJava. Сама возможность имитировать работу ЦП с помощью программы, показывает, что программа вычислений не обязательно должна выполняться аппаратным процессором. Напротив, вызывать из памяти, определять тип команды и выполнять команду может другая программа (интерпретатор). Другими словами, применение трансляторов с ЯВУ не только способ перейти к машинному языку, языку понятному машине, но и мощный метод эмуляции работы ЦП.

Программа на ЯВУ

Компилятор

Перевод исходной программы на эквивалентный набор команд машинного кода

Виртуальная машина Java Компилятор Псевдокод Интерпретатор

Интерпретатор Последовательный перевод команды за командой в эквивалентный машинный код с немедленным исполнением готовой команды

Рис.5.4 Структура трансляторов

Трансляторы

Как следует из многоуровневой архитектуры ЭВМ, прикладные программы пишутся на языках высокого уровня (ЯВУ). Существуют сотни таких языков, но процессор понимает только язык единиц и нулей. Поэтому программы на ЯВУ обычно транслируются на уровень 3 или 4 (уровень ассемблера). Программы трансляторы бывают двух видов – интерпретаторы и компиляторы.

Программа (микропрограмма) способная вызывать команды, операнды из памяти, определять тип команд и выполнять эти команды называется – интерпретатор.

Интерпретатор разбивает исходную программу на маленькие шаги и последовательно переводит каждую команду в исполняемый машинный код, посылая ее сразу на исполнение. Интерпретатор, как правило, хранится в виде микрокоманд в ПЗУ, например, устройства управления.

Отличительные особенности: медленно (надо декодировать каждую команду, процессор простаивает), но легко переносится на любую платформу, самое главное – в этом случае машина получается существенно более простой, т.к. часть аппаратного обеспечения заменяется программным.

Другая возможность создать транслятор – это использовать программу компилятор. Компилятор переводит полностью исходную программу на эквивалентный набор машинного языка и только затем загружает ее в память машины для выполнения.

Отличительные особенности: быстро, но изменение платформы приводит к необходимости разработки нового компилятора. Есть и третья возможность, известная под именем Java машины или виртуальной машины Java – это компилятор, транслирующий ЯВУ на промежуточный псевдокод, а затем с псевдокода интерпретатор. При этом сочетаются отличительные особенности того и другого метода.

Компьютеры могут иметь интерпретатор и тогда они гораздо проще и дешевле чем компьютеры без интерпретации, а могут и не иметь, но тогда они должны использовать технику компиляции. Впервые интерпретация получила применение при реализации компьютеров способных выполнять сложные команды, предназначенные для высокопроизводительных и дорогих машин (IBMS./360,S/370,S/390). Это сформировало тенденцию введения все более и более сложных команд (порядка 300 уVAXDECи 200 способов определения операндов). Главное преимущество интерпретации заключалось в том, что можно было разработать простой процессор, а вся сложность сводилась к созданию интерпретатора.

(Такое операторное управление вычислительным процессом привело к необходимости использовать разнообразные форматы обработки данных (например: тривиальное суммирование в S/360 имело около 20 различных форматов). Хотя машина была способна вычислять экспоненту, логарифм, но простые операции производились очень медленно. Действительно, что бы перевести команду сложения в машинный код, интерпретатор должен был просмотреть более 20 возможных команд. Такое разнообразие инструкций потребовало и множества командных форматов различной длины.) Каждый процессор имеет свои специфические команды, наборы регистров и режимы адресации, поэтому программу на Ассемблере невозможно перенести с одной аппаратной платформы на другую. Для того чтобы не зависеть от конкретного процессора, часто используют язык описания команд RTL, от англ. Register Transfer Language — язык перемещения регистров. Фактически RTL представляет собой Ассемблер, не зависящий от конкретного процессора. Многие компиляторы, например, gcc, не переводят программу с языка высокого уровня сразу на язык машинных команд, а сначала транслируют ее на язык RTL. Затем на уровне RTL выполняется оптимизация кода, которая составляет 99% работы компилятора. И лишь на последнем этапе программа c языка RTL переводится на язык команд конкретного процессора. Поскольку RTL максимально приближен к Ассемблеру, трансляция из RTL в конкретный Ассемблер не представляет никакого труда. Такой подход позволяет сделать компилятор с языка высокого уровня практически независимым от конкретной архитектуры. Зависим лишь модуль, осуществляющий перевод с RTL в Ассемблер, но его реализация требует минимальных усилий.