- •Московский государственный институт
- •Лекция 1. Базовые понятия информации Введение
- •Информация, энтропия и избыточность при передаче данных
- •Информационные процессы
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Представление данных в эвм.
- •Вопросы и задания
- •Лекция 2. Компьютер – общие сведения
- •Центральное процессорное устройство
- •Устройства ввода/вывода
- •Классификация запоминающих устройств
- •Оперативная память
- •Основные внешние устройства компьютера
- •Основные характеристики персональных компьютеров
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы иCase– технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Суперкомпьютеры
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Использование параллельных вычислительных систем
- •Закон Амдала и его следствия
- •Вопросы и задания
- •Лекция 6 Структурная организация эвм - процессор Введение
- •Что известно всем
- •Назначение процессора и его устройство
- •Устройство управления
- •Микропроцессорная память
- •Основная (оперативная) память - структура адресной памяти
- •Интерфейсная часть мп
- •Тракт данных типичного процессора
- •Команды уу
- •Базовые команды
- •Трансляторы
- •Архитектура системы команд и классификация процессоров
- •Микроархитектура процессораPentiumIi
- •512 Кбайт
- •Вопросы и задания
- •Лекция 6 Структурная организация эвм - память Общие сведения
- •Верхняя
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений.
- •Видеопамять
- •Иерархия памяти компьютера
- •Оперативная память, типы оп
- •Логическая организация памяти
- •Связывание адресов
- •Функции системы управления памятью
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 7 Логическая организация памяти Введение
- •Адресная, ассоциативная и стековая организация памяти
- •Стековая память
- •Сегментная организация памяти.
- •Косвенная адресация
- •Операнд 407 суммируется с
- •Типы адресов
- •Понятие виртуальной памяти
- •Страничное распределение
- •Свопинг
- •Вопросы и задания
- •Лекция 8 Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Конструкция жесткого диска
- •Основные характеристики нмд:
- •Способы кодирования данных
- •Интерфейсы нмд
- •Структура хранения информации на жестком диске
- •Кластер
- •Методы борьбы с кластеризацией
- •Магнито-оптические диски
- •Дисковые массивы и уровни raid
- •Лазерные компакт-дискиCd-rom
- •Вопросы и задания
- •Лекция 9 Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Интерфейс
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Прямой доступ к памяти (Direct Memory Access – dma)
- •Логические принципы организации ввода-вывода
- •Структура системы ввода-вывода
- •Буферизация и кэширование
- •Заключение
- •Структура шин современного пк
- •Мост pci
- •Вопросы и задания
- •Лекция 10.BioSи его настройки Введение
- •Начальная загрузка компьютера
- •Вход вBioSи основные параметры системы
- •Общие свойства – стандартная настройка параметров
- •СвойстваBios
- •Свойства других чипсетов
- •Свойства интегрированных устройств
- •Свойства слотов pci
- •Управление питанием
- •Лекция 11 Особенности архитектуры современных вс
- •Область применения и способы оценки производительности мвс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Многопроцессорные архитектуры – параллелизм на уровне процессоров
- •Векторные компьютеры
- •Использование параллельных вычислительных систем
- •Закон Амдала и его следствия
- •Вопросы и задания
- •Лекция 12 Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •Mpp архитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 13 Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Avalibility и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 14 Высокопроизводительные процессоры
- •Ассоциативные процессоры
- •Конвейерные процессоры
- •Матричные процессоры
- •Клеточные и днк процессоры
- •Клеточные компьютеры
- •Трансгенные технологии
- •Коммуникационные процессоры
- •Процессоры баз данных
- •Потоковые процессоры
- •Нейронные процессоры
- •Искусственные нейронные сети
- •Нейрокомпьютеры
- •Процессоры с многозначной (нечеткой) логикой
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 16. Файловая система компьютера Введение
- •Общие сведения о файлах
- •Типы файлов
- •Атрибуты файлов
- •Организация файлов и доступ к ним
- •Последовательный файл
- •Файл прямого доступа
- •Другие формы организации файлов
- •Операции над файлами
- •Директории. Логическая структура файлового архива
- •Разделы диска. Организация доступа к архиву файлов.
- •Операции над директориями
- •Защита файлов
- •Контроль доступа к файлам
- •Списки прав доступа
- •Заключение
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Лекция 18. Система счисления и архитектура эвм Введение
- •Системы счисления и их роль в истории компьютеров
- •«Золотое сечение» и компьютер Фибоначчи
- •Геометрическое определение "золотого сечения"
- •Алгебраические свойства золотой пропорции
- •Рассмотрим теперь "золотую пропорцию"
- •Фибонччи и компьютеры
- •"Троичный принцип" Николая Брусенцова.
- •Список литературы:
Суперкомпьютеры
Что такое суперЭВМ? Оксфордский толковый словарь по вычислительной технике, изданный в 1986 году, сообщает, что суперкомпьютер это очень мощная ЭВМ с производительностью свыше 10 MFLOPS (10 миллионов операций с плавающей запятой в секунду). Сегодня это средненький результат даже для ПК. Планки производительности в 10 TFLOPS были успешно перекрыты довольно давно. Суперкомпьютер ASCI WHITE, занимающий первое место в списке пятисот самых мощных компьютеров мира, объединяет 8192 процессора Power 3 с общей оперативной памятью в 4 Терабайта и производительностью более 12 триллионов операций в секунду, а суперкомпьютер IBM Blue Gene/L достиг на тесте Linpack производительности в 153, 3 TFLOPS.
Наиболее значимое отечественное достижение в данном направлении связано с созданием семейства суперкомпьютеров под общим названием «Скиф» в рамках сотрудничества российской и белорусской академий наук. От российской стороны ответственным исполнителем является Институт программных систем в г. Переяславле-Залесском, а от Республики Беларусь – объединение «Кибернетика». Целью работ является создание кластеров с пиковой производительностью в сотни GFLOPS. К практической реализации программы приступили осенью 2000 года, а презентация двух работающих вычислительных систем состоялась уже в мае 2001 года. По основным параметрам «Скиф» не уступает зарубежным аналогам в своем классе компьютеров, а по соотношению цена/производительность намного их превосходит. Осенью 2004 года старшая в ряду «Скифов» система К-1000, включающая 288 двухпроцессорных вычислительных узлов на базе 64-разрядных процессоров AMD Opteron с частотой 2200 МГц, показала производительность 2500 GFLOPS и вошла в рейтинг-листTop-500, заняв в нем 98-е место.
Второе направление зародилось на базе ИТМ и ВТ – колыбели отечественного компьютеростроения. После того, как резко снизилось государственное финансирование, большая группа разработчиков во главе с Б.А. Бабаяном стала активно искать зарубежных инвесторов с целью реализации передовых отечественных идей на современной западной технологии. В их активе была закончившаяся в 1991 году разработка 16-процессорного «Эльбруса-3», содержащего самые передовые архитектурные решения и по своей производительности (10 GFLOPS) опережавшего современный ему CrayY-MP. Однако реализованный в стенах ИТМ и ВТ экземпляр был собран на элементах устаревшей 2-микронной технологии. Громоздкий шкаф с 15 млн. транзисторов и около 3 тыс. схем средней и малой интеграции вполне мог быть «упакован» в 2–3 чипа. В 1992 году работами российских ученых заинтересовалась фирма Sun Microsystems. Был создан «Московский центр SPARC-технологий» (МЦСТ), который, объединившись с некоторым другими фирмами в группу компаний «Эльбрус», осуществляет ряд успешных проектов для отечественных и зарубежных заказчиков. Среди них процессор «Эльбрус-2000» (Е2k), в котором в доработанном и усовершенствованном виде воплощены на кристалле основные принципы «Эльбруса-3».
Вот лишь небольшой список областей человеческой деятельности, где использование суперкомпьютеров необходимо:
автомобилестроение;
нефте- и газодобыча;
фармакология;
прогноз погоды и моделирование изменения климата;
сейсморазведка;
проектирование электронных устройств;
синтез новых материалов;
и многие, многие другие.
В 1995 году корпус автомобиля Nissan Maxima удалось сделать на 10% прочнее благодаря использованию суперкомпьютера фирмы Cray (The Atlanta Journal, 28 мая, 1995г). С помощью него были найдены не только слабые точки кузова, но и наиболее эффективный способ их удаления. По данным Марка Миллера (Mark Miller, Ford Motor Company), для выполнения crash-тестов, при которых реальные автомобили разбиваются о бетонную стену с одновременным замером необходимых параметров, съемкой и последующей обработкой результатов, компании Форд понадобилось бы от 10 до 150 прототипов новых моделей при общих затратах от 4 до 60 миллионов долларов. Использование суперкомпьютеров позволило сократить число прототипов на одну треть. Совсем недавний пример - это развитие одной из крупнейших мировых систем резервирования Amadeus, используемой тысячами агенств со 180000 терминалов в более чем ста странах. Установка двух серверов Hewlett-Packard T600 по 12 процессоров в каждом позволила довести степень оперативной доступности центральной системы до 99.85% при текущей загрузке около 60 миллионов запросов в сутки. И подобные примеры можно найти повсюду. В свое время исследователи фирмы DuPont искали замену хлорофлюорокарбону. Нужно было найти материал, имеющий те же положительные качества: невоспламеняемость, стойкость к коррозии и низкую токсичность, но без вредного воздействия на озоновый слой Земли. За одну неделю были проведены необходимые расчеты на суперкомпьютере с общими затратами около 5 тысяч долларов. По оценкам специалистов DuPont, использование традиционных экспериментальных методов исследований потребовало бы около трех месяцев и 50 тысяч долларов и это без учета времени, необходимого на синтез и очистку необходимого количества вещества.