
- •Московский государственный институт
- •Лекция 1. Базовые понятия информации Введение
- •Информация, энтропия и избыточность при передаче данных
- •Информационные процессы
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Вопросы и задания
- •Лекция 2. Компьютер – общие сведения
- •Материнская плата
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы иCase– технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Суперкомпьютеры
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Использование параллельных вычислительных систем
- •Закон Амдала и его следствия
- •Вопросы и задания
- •Лекция 6. Структурная организация эвм - процессор Введение
- •Что известно всем
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Назначение элементов процессора
- •Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Тракт данных типичного процессора
- •Базовые команды
- •Трансляторы
- •Архитектура системы команд и классификация процессоров
- •Микроархитектура процессораPentiumIi
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память Общие сведения
- •Верхняя
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Иерархия памяти компьютера
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Конструкция жесткого диска
- •Основные характеристики нмд:
- •Способы кодирования данных
- •Интерфейсы нмд
- •Структура хранения информации на жестком диске
- •Кластер
- •Методы борьбы с кластеризацией
- •Магнито-оптические диски
- •Дисковые массивы и уровни raid
- •Лазерные компакт-дискиCd-rom
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Интерфейс
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Прямой доступ к памяти (Direct Memory Access – dma)
- •Логические принципы организации ввода-вывода
- •Структура системы ввода-вывода
- •Буферизация и кэширование
- •Структура шин современного пк
- •Мост pci
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •MpPархитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Вопросы и задания
Как соотносятся между собой объем памяти и ее быстродействие и почему?
Что хранится в ПЗУ компьютера?
Что такое BIOSи каковы его функции?
Перечислите достоинства и недостатки статических и динамических МС.
Что такое кэш-память и как она работает?
Можно ли считать из памяти отдельно взятый бит?
Оцените, какая доля адресного пространства памяти вашего компьютера реально занята.
Лекция 8. Логическая организация памяти
Мы уже говорили, что размер реальной физической памяти не соответствует адресному пространству процессора, разрядности его адресной шины. Эта проблема всегда актуальна, а ранее она была просто угрожающей. Программисты тратили много времени на то, что бы впихнуть свои программы в небольшую основную память процессора.
Существовала еще одна проблема, аппаратная организация памяти в виде линейного набора ячеек не соответствует представлениям программиста о том, как организовано хранение программ и данных. Большинство программ представляет собой набор модулей, созданных независимо друг от друга. Иногда все модули, входящие в состав процесса, располагаются в памяти один за другим, образуя линейное пространство адресов. Однако чаще модули помещаются в разные области памяти и используются по-разному.
Виртуальная память
Эти проблемы решались и решаются до сих пор. Есть несколько способов, позволяющих согласовать разные объемы памяти, разные способы ее организации в представлении программистов и реально аппаратно существующей.
Традиционным решением было использование вспомогательной памяти и разделения программы на несколько частей, так называемых оверлеев, каждый из которых перемещался по мере надобности между основной и вспомогательной памятью. В дальнейшем этот метод развился в страничную организацию памяти, когда память разбивалась на блоки фиксированного объема – страницы. Именно они образовывали единое линейное пространство адресов и перемещались с диска на основную память. Однако и этот метод не вполне удовлетворил потребности программистов и эволюционировал в сегментную организацию памяти. Сегмент – область памяти определенного назначения, внутри которой поддерживается линейная адресация. В этом случае память представлялась блоками переменной длины (и большего размера, по отношению к страницам) – сегментами, иногда их называют параграфами что, на мой взгляд, больше отвечает существу дела.
Развитие методов организации вычислительного процесса в этом направлении привело к появлению метода, известного под названием – виртуальная память, о чем мы будем говорить более подробно ниже.
Таким образом, виртуальная память - это совокупность программно-аппаратных средств, позволяющих пользователям писать программы, размер которых превосходит имеющуюся оперативную память; для этого виртуальная память решает следующие задачи:
размещает данные в запоминающих устройствах разного типа, например, часть программы в оперативной памяти, а часть на диске;
перемещает по мере необходимости данные между запоминающими устройствами разного типа, например, подгружает нужную часть программы с диска в оперативную память;
преобразует виртуальные адреса в физические.
CPU
Виртуальный адрес
MMU
Данные
(или команды)
Кэш
Физический адрес