
- •Московский государственный институт
- •Лекция 1. Базовые понятия информации Введение
- •Информация, энтропия и избыточность при передаче данных
- •Информационные процессы
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Вопросы и задания
- •Лекция 2. Компьютер – общие сведения
- •Материнская плата
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы иCase– технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Суперкомпьютеры
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Использование параллельных вычислительных систем
- •Закон Амдала и его следствия
- •Вопросы и задания
- •Лекция 6. Структурная организация эвм - процессор Введение
- •Что известно всем
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Назначение элементов процессора
- •Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Тракт данных типичного процессора
- •Базовые команды
- •Трансляторы
- •Архитектура системы команд и классификация процессоров
- •Микроархитектура процессораPentiumIi
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память Общие сведения
- •Верхняя
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Иерархия памяти компьютера
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Конструкция жесткого диска
- •Основные характеристики нмд:
- •Способы кодирования данных
- •Интерфейсы нмд
- •Структура хранения информации на жестком диске
- •Кластер
- •Методы борьбы с кластеризацией
- •Магнито-оптические диски
- •Дисковые массивы и уровни raid
- •Лазерные компакт-дискиCd-rom
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Интерфейс
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Прямой доступ к памяти (Direct Memory Access – dma)
- •Логические принципы организации ввода-вывода
- •Структура системы ввода-вывода
- •Буферизация и кэширование
- •Структура шин современного пк
- •Мост pci
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •MpPархитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Оперативная память, типы оп
Тип оперативной памяти важен постольку, поскольку технология изготовления и физические принципы ее функционирования определяют самый важный параметр – быстродействие. Чем выше быстродействие ОП, тем меньше время доступа к ней. В настоящее время наиболее распространены микросхемы памяти двух типов: статические ОЗУ – SRAM и динамические – DRAM. Разумеется, более быстрая память дороже стоит, поэтому SRAM используется, как правило, для кэш памяти, в регистрах микропроцессора и системах управления.
Конструктивное исполнение
Динамическое ОЗУ со времени своего появления прошло несколько стадий роста и продолжает совершенствоваться. Вначале микросхемы динамического ОЗУ производились в DIP-корпусах. Затем их сменили модули SIPP, DIMM, SIMM и RIMM.
SIMM - модуль (Single In-Line Memory Module), модуль с однорядным расположением выводов, могут иметь объем 256 Кбайт, 1,2,4, 8, 16 и 32 Мбайт. Модули SIMM для соединения с системной платой имеют не штырьки, а позолоченные полоски (так называемые pin, пины). Первыми SIMM-модулями были 30-пиновые SIMM FPM DRAM, с частотой работы 29 МГц, затем 72-пиновые EDO RAM с частотой 50 МГц. Существенной особенностью ПК, собранных на Pentium является то, что они имеют 64-разрядную шину данных, а это означает, что 32-разрядные SIMM можно устанавливать только парами. В настоящее время SIMM-модули, как 30-пиновые, так и 72-пиновые заменяются модулями DIMM. DIMM (Dual Inline Memory Module) – модуль памяти с двойным расположением 168 выводов. Следует отметить, что разъем DIMM имеют много разновидностей DRAM.
SDRAM (Synchronic DRAM) – динамическое ОЗУ с синхронным интерфейсом, работающие на частотах 143 МГц и выше. ESDRAM – динамические ОЗУ с синхронным интерфейсом, с кэшом на самом модуле, работающие на частотах 200 МГц и выше. SLDRAM – имеет в своем составе SRAM, работает на частоте до 400 МГц. RDRAM, RIMM – работает на частоте до 800 МГц.
Мы уже видели, что стоимость хранения данных в расчете на один бит увеличивается с ростом быстродействия. Однако пользователю хотелось бы иметь и недорогую, и быструю память. Кэш-память представляет некоторое компромиссное решение этой проблемы. Однако известно, рост производительности процессора составляет 60% в год, а уменьшение задержки памяти всего на 7%. Разрыв между быстродействием CPUи быстродействием памяти приводит к появлению «узкого горла». Кэш-память только частично решает эту проблему, создавая новую – почти 50% площади кристалла отдается кэшу (например,Alpha21164 компанииDigital).
Кэш-память
Одним из самых важных вопросов компьютерной техники был и остается вопрос построение такой системы памяти, которая могла бы передавать операнды процессору с той же скоростью, с которой он может их обрабатывать. Одним из способов решения этой проблемы – это технология сочетания маленькой и быстрой памяти с большой, но медленной или технология кэш-памяти. Основная идея кэш-памяти проста, в ней находятся наиболее часто встречающиеся слова. Программистам известно, что в течении какого то отрезка времени ограниченный фрагмент кода работает с ограниченным набором данных, если эту часть кода и данных разместить в быстрый буфер, то получим увеличение производительности всего процессора. Если процессору нужно, какое то слово, сначала он обращается к кэш-памяти. Если значительная часть слов находится в кэше, среднее время доступа значительно сокращается.
В основе иерархической организации памяти и принципа функционирования кэш-памяти лежит принцип локальности– большинство программ не выполняют обращений к своим командам и данным равновероятно, а оказывают предпочтение некоторой часть адресного пространства, при этом различают:
пространственную локализацию, которая основана на вероятности того, что в скором времени появится потребность обратится к тому же разделу памяти из котрого была считана предыдущая информация;
временную локальность, которая имеет место тогда, когда недавно запрашиваемые ячейки запрашиваются снова.
Принцип действия кэш-памяти
Основная память и кэш-память делятся на блоки фиксированного размера с учетом принципа локальности. Блоки внутри кэша называют строками кэш-памяти (cache line). Если обращение к кэш-памяти нерезультативно, из основной памяти в кэш загружается вся строка, а не только необходимое слово. Возможно, через некоторое время понадобятся другие слова из этой строки.
CPU ОП
Запрос
КЭШ
(кэш-попадание)
Рис. 7.2 Кэш-память и связь с процессором
Обычно содержимое кэш-памяти представляет собой совокупность записей обо всех загруженных в нее элементах данных из основной памяти. Строка кэш-памяти состоит из нескольких последовательных байтов (обычно от 4 до 64). Строки нумеруются, начиная с 0. Т.е. если размер строки составляет 16 байт, то строка 0 – это байты с 0 по 15, строка 1 – это байты с 16 по 31 и т.д. (см. Рис 6.2). Возьмем в качестве примера некоторый микропроцессор с 12 разрядной шиной адреса (объем памяти 4Кбайт) и кэшем из 16 строк по 16 байт.
№ блока строки кэш-памяти (байты данных)
4095------------------------4080 4079------------------------4064 _ _ _ _ _ _ _
31----------------------------16 15------------------------------0 0------------------------------------------
15
255
254
2
1
0
Рис. 7.3 Структура ОП
В любой момент времени несколько строк находятся в кэш-памяти. Когда происходит обращение к памяти, контроллер кэша проверяет, есть ли нужное слово в данный момент в кэш-памяти, если нет тогда происходит загрузка необходимой строки из ОП. Существует множество вариаций данной схемы, различающихся временем доступа, производительностью и т.д.
Кэш-память прямого отображения
Самый простой тип кэш-памяти – это кэш прямого отображения, когда любая строка из ОП может появиться только на одном месте кэша. Пусть кэш-память содержит 16 строк по 16 байт. Каждый элемент кэша (строка) вмещает ровно одну строку из ОП. В этом случае мы имеем кэш-память объемом 256 байт на которую должен быть отображен объем 4 Кбайт ОП (Рис.6.3)
Кэш – 256 байт ОП – 4 Кбайт
Адрес строки кэша Адрес блока и строки
15…………………………0
байт 15……………………….0
байт
111115,31…1111 1111 255
1110
- 0011 0000 48
-
-
01117,23,39,…0010 0001 33
-0010 0001 32
-
-
00011,17,33,…
00000,16,32,…
0001 0001 17
0001 0000 16
16 байт
0000 00011
0000 0000 0
Тэг Строка Слово (байт)
Рис. 7.4 Отображение пространства ОП на пространство кэш-памяти.
Очевидно, что при таком отображении основной памяти на память кэша каждому блоку (по объему) ОП отводится одна строка кэш-памяти.
Предположим, процессор обращается по адресу 0010 0001 0110, в этом случае мы должны проверить 1-ую строку кэша (0001) и если в ней находится нужная строка памяти, то считать 5-ый байт (0110). Но в этой строке кэша могут быть представлены 1,17,33 и т.д. строки из основной памяти. Как же узнать, какая именно строка записана в кэш? Для этого служит информация представленная в тэге (tag), четыре бита в нашем случае (0010), т.е. это 33 строка (0010 0001) и никакая другая. Таким образом, физический адрес разбивается на несколько частей: