
- •Московский государственный институт
- •Лекция 1. Базовые понятия информации Введение
- •Информация, энтропия и избыточность при передаче данных
- •Информационные процессы
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Вопросы и задания
- •Лекция 2. Компьютер – общие сведения
- •Материнская плата
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы иCase– технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Суперкомпьютеры
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Использование параллельных вычислительных систем
- •Закон Амдала и его следствия
- •Вопросы и задания
- •Лекция 6. Структурная организация эвм - процессор Введение
- •Что известно всем
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Назначение элементов процессора
- •Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Тракт данных типичного процессора
- •Базовые команды
- •Трансляторы
- •Архитектура системы команд и классификация процессоров
- •Микроархитектура процессораPentiumIi
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память Общие сведения
- •Верхняя
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Иерархия памяти компьютера
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Конструкция жесткого диска
- •Основные характеристики нмд:
- •Способы кодирования данных
- •Интерфейсы нмд
- •Структура хранения информации на жестком диске
- •Кластер
- •Методы борьбы с кластеризацией
- •Магнито-оптические диски
- •Дисковые массивы и уровни raid
- •Лазерные компакт-дискиCd-rom
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Интерфейс
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Прямой доступ к памяти (Direct Memory Access – dma)
- •Логические принципы организации ввода-вывода
- •Структура системы ввода-вывода
- •Буферизация и кэширование
- •Структура шин современного пк
- •Мост pci
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •MpPархитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Назначение элементов процессора
Процессор - ЦПУ или CPU, его задача не только обрабатывать большую часть информации (выполнять программу, находящуюся в памяти компьютера), но и управлять работой всех частей (аппаратных и программных) компьютера. Процессор состоит из:
АЛУ, которое выполняет арифметические и логические операции;
УУили блок управления, вызывает команды из памяти, определяет их тип (декодирует), интерпретирует эти команды (ПЗУ – интерпретатор) и организует обращение к памяти (поиск операндов, запись результатов и т.д.), обрабатывает поступающие на процессор запросы на прерывание, блок управления прямым доступом к памяти (ПДП) служит для временного отключения процессора от внешних шин и организации прямого доступа к памяти различным устройствам ввода/вывода;
Кэш-память– внутренняя память 1-го уровня, хранение исполняемой команды и данных;
Микропроцессорная, сверхбыстродействующая память– регистровый файл, регистровая память, содержащая: специальные регистры (счетчик команд, регистр команд, регистр данных и т.д.), регистры общего назначения (РОН)– память для временного хранения операндов, сегментные регистры для организации логической памяти;
Внутрисистемный интерфейс или интерфейс магистрали – реализует протоколы обмена ЦПУ с памятью компьютера, контроллерами устройств ввода/вывода, и т.д., по определенным правилам и каналам связи.
АЛУ
Рис. 6.4 Функциональная схема АЛУ
Арифметикo-логическое устройствопредназначено для выполнения арифметических и логических операций преобразования информации.
Функционально АЛУ (рис. 5.1) состоит обычно из двух регистров, сумматора и схем управления (местного устройства управления).
Сумматор - вычислительная схема, выполняющая процедуру сложения поступающих на ее вход двоичных кодов.
Регистры - быстродействующие ячейки памяти различной длины. При выполнении операции в Pr1 помещается первое число, участвующее в операции, а по завершении операции - результат; в Pr2- второе число, участвующее в операции (по завершении операции информация в нем не изменяется). Регистр 1 может принимать информацию с кодовых шин данных, и выдавать информацию с этих шин.
Схемы управления принимают по кодовым шинам инструкций управляющие сигналы от устройства управления и преобразуют их в сигналы для управления работой регистров и сумматора АЛУ.
АЛУ выполняет арифметические операции только над двоичной информацией с запятой, фиксированной после последнего разряда, т.е. только над целыми двоичными числами.
Выполнение операций над двоичными числами с плавающей запятой и над двоично-кодированными десятичными числами осуществляется или с привлечением математического сопроцессора, или по специально составленным программам.
Устройство управления
Для реализации любой команды необходимо на соответствующие управляющие входы любого устройства компьютера подать определенным образом распределенную во времени последовательность управляющих сигналов. Часть цифрового вычислительного устройства, предназначенная для выработки этой последовательности, называется устройством управления.
Любое действие, выполняемое в операционном блоке, описывается некоторой микропрограммой и реализуется за один или несколько тактов. Элементарная функциональная операция, выполняемая за один тактовый интервал и приводимая в действие управляющим сигналом, называется микрооперацией. Совокупность микроопераций, выполняемых в одном такте, называется микрокомандой (МК). Если все такты должны иметь одну и ту же длину, а именно это имеет место при работе компьютера, то она устанавливается по самой продолжительной микрооперации. микрокоманды, предназначенные для выполнения некоторой функционально законченной последовательности действий, образуют микропрограмму. Например, микропрограмму образует набор микрокоманд для выполнения команды умножения. Устройство управления предназначено для выработки управляющих сигналов, под воздействием которых происходит преобразование информации в арифметико-логическом устройстве, а также операции по записи и чтению информации в/из запоминающего устройства.
Устройства управления делятся на:
УУ с жесткой, или схемной логикой;
УУ с программируемой логикой (микропрограммные УУ).
В устройствах управленияпервого типа для каждой команды, задаваемой кодом операции, строится набор комбинационных схем, которые в нужных тактах вырабатывают необходимые управляющие сигналы.В микропрограммных УУкаждой команде ставится в соответствие совокупность хранимых в специальной памяти слов -микрокоманд. Каждая измикрокомандсодержит информацию омикрооперациях, подлежащих выполнению в данном такте, и указание, какое слово должно быть выбрано из памяти в следующем такте.Микропрограммное устройство управленияпредставлено на рисунке. Преобразователь адресамикрокомандыпреобразует код операции команды, присутствующей в данный момент в регистре команд, в начальный адресмикропрограммы, реализующей данную операцию, а также определяет адрес следующеймикрокомандывыполняемоймикропрограммыпо значению адресной части текущеймикрокоманды.
Рис. 6.5Функциональная
схема микропрограммного устройства
управления
Устройство управления содержит дешифратор операций- логический блок, выбирающий в соответствии с поступающим из регистра команд кодом операции (КОП) один из множества имеющихся у него выходов.
Постоянное запоминающее устройство микропрограмм- хранит в своих ячейках коды об управляющих сигналах (импульсах), необходимые для выполнения в блоках ПК операций обработки информации. Эти коды, по выбранному дешифратором операций в соответствии с кодом операции команды, считывает из ПЗУ микропрограмм необходимую последовательность управляющих сигналов.
Узел формирования адреса(находится в интерфейсной части МП) - устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд и регистров микропроцессорной памяти.
Кодовые шины данных, адреса и инструкций- часть внутренней шины микропроцессора. В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:
выборки из регистра-счетчика адреса команды МПП адреса ячейки ОЗУ, где хранится очередная команда программы;
выборки из ячеек ОЗУ кода очередной команды и приема считанной команды в регистр команд;
расшифровки кода операции и признаков выбранной команды;
считывания из соответствующих расшифрованному коду операции ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках машины процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;
считывания из регистра команд и регистров МПП отдельных составляющих адресов операндов (чисел), участвующих в вычислениях, и формирования полных адресов операндов;
выборки операндов (по сформированным адресам ) и выполнения заданной операции обработки этих операндов;
записи результатов операции в память;
формирования адреса следующей команды программы.