
- •Московский государственный институт
- •Лекция 1. Базовые понятия информации Введение
- •Информация, энтропия и избыточность при передаче данных
- •Информационные процессы
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Вопросы и задания
- •Лекция 2. Компьютер – общие сведения
- •Материнская плата
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы иCase– технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Суперкомпьютеры
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Использование параллельных вычислительных систем
- •Закон Амдала и его следствия
- •Вопросы и задания
- •Лекция 6. Структурная организация эвм - процессор Введение
- •Что известно всем
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Назначение элементов процессора
- •Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Тракт данных типичного процессора
- •Базовые команды
- •Трансляторы
- •Архитектура системы команд и классификация процессоров
- •Микроархитектура процессораPentiumIi
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память Общие сведения
- •Верхняя
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Иерархия памяти компьютера
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Конструкция жесткого диска
- •Основные характеристики нмд:
- •Способы кодирования данных
- •Интерфейсы нмд
- •Структура хранения информации на жестком диске
- •Кластер
- •Методы борьбы с кластеризацией
- •Магнито-оптические диски
- •Дисковые массивы и уровни raid
- •Лазерные компакт-дискиCd-rom
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Интерфейс
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Прямой доступ к памяти (Direct Memory Access – dma)
- •Логические принципы организации ввода-вывода
- •Структура системы ввода-вывода
- •Буферизация и кэширование
- •Структура шин современного пк
- •Мост pci
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •MpPархитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Вопросы и задания
Какие параметры ВС определяют ее производительность?
Какова производительность современных суперкомпьютеров?
Что такое кластерные системы и системы высокой готовности?
Приведите примеры наиболее распространенных серверов.
Лекция 6. Структурная организация эвм - процессор Введение
В предыдущих лекциях мы познакомились с функциональными блоками ЭВМ, вычислительных систем и основными принципами их взаимодействия. Теперь мы можем приступить к более детальному анализу каждого из блоков и узлов в отдельности. Начнем, естественно, с процессора и истории его появления.
Что известно всем
В 1968 году Роберт Нойс, изобретатель кремниевой интегральной схемы (1958), Гордон Мур, автор известного закона Мура, и Артур Рок, капиталист из Сан-Франциско, основали корпорацию Intel для производства компьютерных микросхем.
Первоначальное название “NM Electronicx” звучало не очень привлекательно, после ряда проб остановились на “Integrated Electronics”, утвердить не удалось, зато абривиатуру Intel теперь знают все и стоит она $31 млрд. !!!
За первый год своего существования корпорация продала микросхем (аж!) на $3000. Но вот улыбка судьбы! В августе 1969 года крохотная фирма Intel Corporation, которая была совсем недавно зарегистрирована, получила заказ от небольшой японской фирмы Nippon Calculating Machines, на проектирование микросхем для семейства калькуляторов (10-12 различных несерийных микросхем-калькуляторов). Вместо того, чтобы делать 10-12 различных микросхем на «жесткой логике», т.е. специализированной системе, настроенной на одну, или несколько близких задач. Другими словами, микросхем в которых алгоритмы обработки и хранения данных жестко связаны со схемотехникой и изменения алгоритмов возможны только путем изменения схемотехники системы. Тед Хофман и его сотрудник Стен Мейзор решили разработать одну твердотельную 4-битную микросхему-процессор, представляющую из себя универсальный компьютер с программируемыми функциями, который мог работать в любом из заказанных калькуляторов. Далее грандиозный успех: ноябрь 1970 чип 4001 ----- декабрь 1970 чип 4004. В июне 1971 года Intel анонсировала микропроцессорное семейство 4004 и выкупила все права на микросхему у японской компании за те-же $60000, которые она заплатила, решив расходы на 4004 чрезмерными. Она отказалась от исключительных (!) прав на продукты Intel. Последняя в 1974 г. своими усилиями выпустила 8-разрядный процессор 8080, и наконец покупатели стали проявлять к решениям микроэлектроники реальный интерес. Авторы разработки навечно были внесены в список лауреатов Национального зала Славы США, а само изобретение признано одним из величайших достижений XX века.
Процессор 4004 – 4-х разрядный, 2250 транзисторов, частота – 108 кГц, производительность – 60 000 операций в сек, чип размером со шляпку гвоздя.
Что известно немногим.
В 1968 году (!) два американских инженера Рэй Холт и Стив Геллер создали 20 – разрядный микропроцессор SLF (Special Logic Function).
Чип SLF служил основой бортового компьютера CADC для новейшего истребителя с изменяемой стреловидностью крыла F14. SLF – 20 разрядный процессор с элементами параллельной логики и возможностью расширения (3 синхронно работающих SLF на бортовом компьютере, плюс элементы DSP процессора (!). Можно сказать, что CADC – гениальное для своего времени решение и заложенные в него принципы не устарели и по сей день. Так, в F-14 из-за больших объемов вычислений использовалось одновременно три (!) синхронно работающих микропроцессора SLF. Сравнительно недавно на мировом рынке появились первые общедоступные версии четырехпроцессорных ПК. Строжайшая секретность этой работы не позволила опубликовать результаты исследований, а широкий рынок микропроцессорной техники все больше становился вотчиной Intel.
Первый 16 разрядный Intel 8086 вышел в свет только в 1978 году. Далее история развития микропроцессорной техники это в подавляющем числе случаев – история Intel. Одна самая характерная черта, на мой взгляд, маркетинговой политики этой компании это то, что все процессоры Intel совместимы со своими предшественниками вплоть до процессора 8086. Другими словами, Pentium II,III,IV могут выполнять программы, написанные для процессоров 8086, не думаю, что это есть хорошо, по крайней мере, могу представить возмущение сегодняшних программистов.