- •Московский государственный институт
- •Лекция 1. Базовые понятия информации Введение
- •Информация, энтропия и избыточность при передаче данных
- •Информационные процессы
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Вопросы и задания
- •Лекция 2. Компьютер – общие сведения
- •Материнская плата
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы иCase– технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Суперкомпьютеры
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Использование параллельных вычислительных систем
- •Закон Амдала и его следствия
- •Вопросы и задания
- •Лекция 6. Структурная организация эвм - процессор Введение
- •Что известно всем
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Назначение элементов процессора
- •Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Тракт данных типичного процессора
- •Базовые команды
- •Трансляторы
- •Архитектура системы команд и классификация процессоров
- •Микроархитектура процессораPentiumIi
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память Общие сведения
- •Верхняя
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Иерархия памяти компьютера
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Конструкция жесткого диска
- •Основные характеристики нмд:
- •Способы кодирования данных
- •Интерфейсы нмд
- •Структура хранения информации на жестком диске
- •Кластер
- •Методы борьбы с кластеризацией
- •Магнито-оптические диски
- •Дисковые массивы и уровни raid
- •Лазерные компакт-дискиCd-rom
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Интерфейс
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Прямой доступ к памяти (Direct Memory Access – dma)
- •Логические принципы организации ввода-вывода
- •Структура системы ввода-вывода
- •Буферизация и кэширование
- •Структура шин современного пк
- •Мост pci
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •MpPархитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Лекция 1. Базовые понятия информации Введение
Мы начинаем первое знакомство с величайшим достижением нашей цивилизации, стоящем в одном ряду с изобретением книгопечатания и открытием электричества – компьютером. Сначала мы вспомним базовые понятия информатики, как науки, изучающей основные аспекты получения, хранения, преобразования и передачи информации.Затем мы раскроем сущность, принцип работы компьютера как технического устройства. Затем мы изучим наиболее оптимальные способы соединений компьютерных устройств и технологий с целью получения максимальной эффективности хранения, обработки и передачи информации.
Особенностью нашего курса будет пристальное внимание к фундаментальным аспектам компьютерных и сетевых технологий. Еще одна особенность, мы будем помнить, что ПК давно перестал быть просто вычислителем. Это универсальная система обработки больших и разнородных информационных потоков. А что такое информационный поток? Или более конкретно - Что такое информация?
В сотнях книг и учебниках это понятие трактуется по-разному. А ведь все мы интуитивно понимаем, что это такое. В чем здесь дело? А дело в том, что понятие информации стоит в одном ряду с такими фундаментальными понятиями как энергия, вещество, энтропия, время. Действительно, в природе существует два фундаментальных вида взаимодействия:обмен веществом и обмен энергией(не будем вдаваться в тонкости фактической эквивалентности этих двух явлений). Фундаментальность их проявляется в том, что все остальные взаимодействия происходят только посредством этих взаимодействий. Эти два взаимодействия являютсясимметричнымии подчиняются фундаментальномузакону сохранения – сколько вещества и/или энергии один объект передал другому, столько он потерял, а другой приобрел (рассматриваются замкнутые системы, в которых потери можно охарактеризовать просто другими видами взаимодействия).
Когда в процессе взаимодействия приобретения и потери НЕ совпадают, НЕ равны – такое взаимодействие называют несимметричным. Очевидно, что в предельном случае несимметричного взаимодействия при передаче некоторой субстанции между объектами один из них ее приобретает, а другой НЕ теряет.
Исходя из этого, попробуем выделить необходимый и достаточный признак, по которому можно будет определить, относится то или иное явление к обмену веществом/энергией или к обмену информацией. В этом контексте сформулируем наиболее общее свойство информации.
Любое взаимодействие между объектами, в процессе которого один приобретает некоторую субстанцию, а другой ее не теряет называется ИНФОРМАЦИОННЫМ ВЗАИМОДЕЙСТВИЕМ. При этом передаваемая субстанция называется ИНФОРМАЦИЕЙ.
Отсюда следуют некоторые очевидные свойства информации:
если энергия определяет возможность совершения действия, то информация определяет возможность целесообразного выбора этого действия;
информация не может существовать вне взаимодействия объектов;
информация не теряется ни одним из них в процессе этого взаимодействия;
информация устраняет неопределенность, предоставляет человеку или техническому устройству возможность сделать выбор в пользу одного из нескольких равноправных вариантов.
Впервые понятие информации ввел американский математик Клод Шеннон, рассматривая процесс передачи сообщения между двумя точками в 1948 г. как численную меру неопределенности или неупорядоченности, с которой посланное сообщение прибывает в пункт назначения. Он назвал этот параметр энтропией, применив термин из термодинамики, который там используется для оценки неупорядоченности материи и характеризует несимметричные взаимодействия. Более того, Шеннон предложил формулу, позволяющую определить количество информации, содержащееся в сообщении:
I = Log 2 P
где I– количество информации в битах или энтропия вероятности;
P– вероятность, величина неопределенности, число возможных вариантов.
М
одель
передачи сообщения по Шеннону
Отметим одну интересную особенность этого выражения: символ с высокой вероятностью появления кодируется несколькими битами, тогда как маловероятный символ требует многих бит. Другими словами, энтропия системы, объекта с большим числом степеней свободы очень велика, больше величина хаоса, беспорядка. Однако не всем и не сразу стала очевидной связь количества информации и энтропии, попробуем разобраться в этом.
В работах Планка, а главным образом Больцмана понятие энтропии трактовалась, как мера неумолимой тенденции всякой системы двигаться от менее вероятного состояния кболее вероятному состоянию. Наиболее вероятным состоянием системы является РАВНОВЕСНОЕ состояние, а любая система движется к состоянию равновесия. Содержание второго постулата (принципа) термодинамики формулирует этот закон более строго – энтропия замкнутой системы не убывает (растет для необратимых процессов и остается постоянной для обратимых:
Hs = k Ln Wt
где k– постоянная Больцмана;
Wt– термодинамическая вероятность состояния системы.
Сравним это выражение с определением количества информации данное Шенноном. Очевидно сходство обоих выражений и это сходство носит фундаментальный характер. Как мы уже говорили, энтропия является функцией статистического состояния системы (мерой ее неупорядоченности, хаоса). Пусть имеется некоторая система, энтропия которой равна Ннач. После получения некоторой информации (либо о состоянии объекта, либо о взаимодействии с внешней средой) энтропия должна уменьшаться (растет порядок, уменьшается хаос). В широком смысле можно сказать, что информация, принимаемая объектом,необходимоявляется для него целесообразной, в противном случае это – дезинформация. Следовательно, количество полученной информации можно определить следующим образом:
I = Н нач – Н кон
Количество получаемой объектом информации численно равно неопределенности по выбору действий ведущих к достижению целей объекта или энтропии устраненной благодаря сообщению. Очевидно, что в данном случае речь идет о синтаксической мере информации. Информация устраняет неопределенность, структурирует систему.
Пример:
Примитивные формы информационного взаимодействия в чистом виде можно выделить уже в неживой природе. Действительно, каталическое взаимодействие. Объект, называемый катализатором изменяет скорость протекания химической реакции между группой других объектов, сам катализатор остается неизменным по всем своим свойствам. Ярчайшим примером информационного взаимодействия в ходе которого уменьшается энтропия всей системы, а химические, физические свойства катализатора остаются неизменными – является реакция кристаллизации насыщенного солевого раствора в присутствии кристаллической «затравки».
Обратите внимание на еще одно немаловажное свойство информации – изменение возможно и без получения информации, но при этом оно будет менее вероятным.
