
- •20. Свойства диэлектриков в электростатическом поле.
- •21. Условия существования электрического тока. Законы Ома, Кирхгофа, Джоуля-Ленца.
- •22. Сопротивление проводников, причины его изменения.
- •23. Электрический ток в жидкостях. Методы повышения проводимости жидкости.
- •24. Электрический ток в газах при различных напряжённостях электрического поля
- •25. Электрический ток в вакууме. Методы регулирования.
- •26. Термоэлектрические явления на спаях проводников. Термопара и её работа.
- •27. Понятие полупроводников и механизмов их проводимости
- •28. Дырочно-электронный переход в полупроводниках
- •29. Понятие магнитного поля. Сила Лоренца и сила Ампера
- •30. Движение заряженной частицы в электрическом и магнитном полях.
- •31. Закон Био-Савара-Лапласа для расчёта магнитных полей токов.
- •32. Явления электромагнитной индукции. Правило Ленца.
- •33. Взаимная индукция соленоидов. Работа трансформатора.
- •34. Причины существования ферромагнетиков, парамагнетиков, диамагнетиков.
- •35. Формирование электромагнитных колебаний в колебательном контуре.
- •36. Понятие электромагнитных волн, волновое уравнение для световой волны.
- •37. Связь параметров электрических и магнитных процессов в теории Максвелла
- •38. Законы отражения и преломления света
- •39. Понятия геометрической оптики. Тонкие линзы, их фокусное расстояние, оптическая сила.
33. Взаимная индукция соленоидов. Работа трансформатора.
Рассмотрим два соленоида с индуктивностями и . Поставим вопрос, чему равна индуктивность системы, состоящей из этих последовательно соединенных соленоидов, если их магнитные поля располагаются в одних и тех же точках пространства.
Индуктивность системы определяется потокосцеплением, т.е. общим потоком через все витки:
где I - сила тока в соленоидах.
Суммарный магнитный поток равен алгебраической сумме потоков, пронизывающих все витки соленоида. Все витки первого соленоида пронизываются собственным потоком и потоком , созданным вторым соленоидом. Второй соленоид пронизывается также собственным потоком и потоком , созданным первым соленоидом. Таким образом,
Собственные потоки всегда положительны:
"Чужие" потоки могут быть как положительными, так и отрицательными в зависимости от направления вектора магнитной индукции поля, созданного одним соленоидом в витках другого. При этом знаки магнитных потоков и всегда совпадают. Согласно теореме взаимности, которая выполняется если отсутствуют ферромагнетики
где коэффициенты пропорциональности , L21 называются взаимными индуктивностями второго и первого контуров.
Смысл знаков определяется характером соединения и расположения соленоидов. Если магнитные поля соленоидов сонаправлены, то "чужие" потоки положительны: если поля направлены навстречу друг другу, то - отрицательны: .
Учитывая сказанное, для индуктивности системы двух соленоидов получим:
где знак плюс соответствует случаю сонаправленных полей, а минус - полям, направленным навстречу друг другу.
Трансформатор – это статическое электромагнитное устройство, предуготовленное для преобразования посредством электромагнитной индукции одной системы переменного тока в другую систему переменного тока (без изменения частоты). Трансформатор сконструирован из обмоток и магнитной системы.
В трансформаторе могут находится две или несколько обмоток. Под обмотками в трехфазном трансформаторе подразумевают совокупность трех фаз, соединенных треугольником или звездой. На момент подключения к источнику переменного тока одну из обмоток (её называют первичной) в этой обмотке возникает ЭДС самоиндукции E1, а в другой (её называют вторичной) – ЭДС индукции Е2.
Если же игнорировать падение напряжения в обмотках трансформатора, значение которого очень мало, то формулы можно записать так: E1 = U1 и E2 = U2
U1 – напряжение на первичной обмотке;
U2 – напряжение на вторичной обмотке.
Нам известно, из науки физики что
В первичной и во вторичной обмотках мощности тока одинаковы лишь при идеальном случае. Практически же на нагревание магнитопровода и обмоток часть электрической энергии бесполезно тратится. В таком случае часто сообщают о потере энергии. Конечно, энергия не теряется, а расходуется напрасно на нагревание трансформатора.
Потерями в меди называют потери энергии в обмотках, которые в свою очередь согласно закону Джоуля – Ленца зависят от электрического сопротивления обмоток и силы тока, проходящего по ним. Принято говорить о мощности потерь в меди – Рм.
При работе трансформатора перемагничивается его сердечник (это явление гистерезиса), на что также потребляется и тратится энергия. Впоследствии индуцируются вихревые токи в сердечнике, тем самым, нагревая его. Трата энергии на потери, перемагничивание сердечника и на нагревание вихревыми токами сердечника (на вихревые токи) имеют названия как потери в стали. Обусловлено сообщать о мощности потерь в стали – Рст. Из-за того, что теряется часть энергии в трансформаторе, мощность тока в первичной обмотке больше мощности тока во вторичной обмотке.
Связь мощности тока во вторичной обмотке касательно мощности тока в первичной обмотке именуют коэффициентом полезного действия трансформатора – КПД трансформатора. КПД трансформатора значительный – примерно 98-99,5%.
Производя замер мощности тока в обмотках или мощности потерь энергии в обмотках и магнитопроводе, тем самым находят КПД трансформатора. Вследствие этого формула для нахождения КПД трансформатора
выглядит так:
Распознают всего два режима работы трансформатора: эта работа под нагрузкой и работа без нагрузки – холостой ход. На момент работы трансформатора, при котором первичная обмотка находится под номинальным напряжением, а вторичная просто разомкнута, то есть мощность и сила тока в ней равны нулю, называют холостым ходом трансформатора. На время холостого хода сила тока в первичной обмотке в десятки раз меньше номинальной. Отчего значительно малы и потери энергии в меди. От того, что напряжение на первичной обмотке номинальное, то на момент холостого хода потери в стали те же самые, как и на время номинального режима работы трансформатора под нагрузкой.
При включении электроприемника в цепь вторичной обмотки, то есть, на момент работы трансформатора под нагрузкой, напряжение на его первичной обмотке остается практически неизменным, а пропорционально изменению силы тока во вторичной обмотке изменяется сила тока в ней. Таким образом, к примеру в увеличении силы тока во вторичной обмотке увеличивается энергия используемая электроприемником, а это значит мощность тоже увеличивается, используемая трансформатором от источника тока, то есть от электрической сети, в которую подключена первичная обмотка трансформатора.
Такое явление поясняют следующим образом: полное значение в сердечнике суммарного магнитного потока – постоянная величина; ток, идущий по вторичной обмотке, образовывает магнитный поток, который в соответствии правилу Ленца сориентирован против магнитного потока, образовываемого током первичной обмотки; например, если возрастет сила тока во вторичной обмотке, то усилится и магнитный поток в ней, а это значит, должен увеличиться и магнитный поток, формируемый током первичной обмотки; последнее может произойти лишь при увеличении силы тока в первичной обмотке.