
- •1.)Гомогенная и гетерогенная система.Фаза,компонент.Факторы,влияющие на скорость химической реакции.
- •2.)Средняя и мгновенная скорость химической реакции.Факторы,влияющие на скорость в гомогенной и гетерогенной системах.
- •3.)Зависимость скорости зимической реакции от концентрации реагирующих веществ в гомогенной и гетерогенной системах.Примеры.
- •4.)Зависимость скорости химической реакции от температуры.Уравнение Вант-Гоффа.
- •5.)Активные и неактивные молекулы.Энергия активации.Единицы измерения.
- •6.)Обратимые и необратимые процессы.Кинетика обратимого процесса.Привести примеры.
- •7.)Состояние химического равновесия.Константа равновесия.Привести пример.Какие факторы влияют на константу равновесия.
- •8,9)Смещение химического равновесия.Принцип Ле-Шателье.
- •10.)Энергетические эффекты химической реакции.Первый хакон термодинамики.
- •12.)Энтальпия.Стандартные условия при определении энтальпии.Каким образом рассчитывается.
- •13.Закон Гесса.Привести пример определения энтальпии химической реакции.
- •14.Понятие об энтропии.Как связано понятие энтропии с изменением объёма системы.
- •15.Движущая сила химической реакции.Энергия Гиббса.Определение температуры равновесия.
- •16.)Способы выражения концентраций растворов.
- •17.)Понятие об эквиваленте.Закон эквивалентов.Нормальная с.Определение эквивалента соли,оксида,кислоты,основания.
- •18.Теория электролитической диссоциации.
- •19.Кислоты,основания,соли.Процессы диссоциации.Основные свойства.
- •20.)Степень диссоциации.Сильные и слабые электролиты.
- •21.)Ионное произведение воды.Водородный показатель.
- •22.)Гидролиз солей.Факторы,влияющие на процессы гидролиза соли.
- •23.)Растворимость.Насыщенные и пересыщенные растворы.
- •24.)Произведение растворимости.
- •25.)Давление насыщенного пара.Закон Рауля.Определение температуры кипения и кристаллизации раствора.Эбуллиоскопические и криоскопические константы.
- •26.)Отклонение от закона Рауля для растворов электролитов.Изотонический эффект.
- •27.)Временная и постоянная жесткость воды.Единицы измерения жесткости.Устранение временной и постоянной жесткости воды.Иониты.
- •28.)Окислительно-восстановительные реакции. Степень окисления.Важнейшие окислители и восстановители.
- •29.)Типы окислительно-восстановительных реакций.Привести примеры.
- •30.)Механизм возникновения электродного потенциала.
- •31.)Гальванические элементы.Принцип работы.Эдс элемента.
- •32.)Гальванический элемент Якоби и Вольта.
- •33.)Стандартный (водородный) электрод.Определение стандартного электродного потенциала металла.
- •34.)Ряд напряжений металлов и выводы из него.
- •35.)Концентрационные гальванические элементы.Уравнение Нернста.
- •36.)Электронные процессы на электродах при электролизе.Электролиз расплава соли.
- •37.)Электролиз водного раствора соли.
- •38.)Законы Фарадея.Применение процессов электролиза.
- •39.)Виды коррозионных разрушений.
- •40.)Классификация коррозионных процессов.Химическая и электрохимическая коррозия.
- •42.)Методы защиты металлов от коррозии.
28.)Окислительно-восстановительные реакции. Степень окисления.Важнейшие окислители и восстановители.
Окислительно-восстановительными реакциями называются процессы,сопроваждающиеся переходом электронов от одних атомов или ионов к другим и изменением степени окисления.Степенью окисления называется заряд атома или иона элемента ,вычисленный, исходя из условного предположения,что все связи в молекуле являются ионными.
Важнейшие окислители
1. Неметаллы. Окислительная способность неметаллов увеличивается в ряду: P, Se, At, I, S, Вr, N, Сl, О, F.
Самыми сильными окислителями среди неметаллов являются галогены и кислород
Галогены F2, Cl2, Br2, I2
1. Металлы. К типичным восстановителям относятся активные щeлoчныe и щeлoчнo-зeмeльныe мeтaллы, цинк, алюминий, жeлeзo и др.
Zn + 2HCl = ZnCl2 + H2
29.)Типы окислительно-восстановительных реакций.Привести примеры.
Типы окислительно - восстановительных реакций: 1)межмолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например: Н2S + Cl2 → H2SO4 + 2HCl; 2)внутримолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например: 2H2O → 2H2 + O2; 3)диспропорционирование (самоокисление-самовосстановление) - реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например: Cl2 + H2O → HClO + HCl; 4)репропорционирование (конпропорционирование) - реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления, например: NH4NO3 → N2O + 2H2O
30.)Механизм возникновения электродного потенциала.
Любой металл хотя бы в ничтожжно малой степени растворяется в воде.При этом из металлической решетки в воду переходят положительно заряженные ионы металла,а в металле остаются избыточные свободные электроны,т.е. на границе раздела фаз возникает двойной электрический слой.
31.)Гальванические элементы.Принцип работы.Эдс элемента.
Гальванический элемент состоит из двех элкетродов (металллов),погруженных в раствор одноименной соли.Роль анода всегда выполняет электрод,у которого меньшее значение электродного потенциала.При работе гальванического элемента на аноде протекает процесс окисления.ЭДС элемента определяется по разности электродных потенциалов анода и катода. . Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока.ЭДС измеряется в вольтах.
32.)Гальванический элемент Якоби и Вольта.
Во́льтов сто́лб — применявшееся на заре электротехники устройство для получения электричества.
В 1800 году итальянский учёный Алессандро Вольта опустил в банку с кислотой две пластинки — цинковую и медную — и соединил их проволокой. После этого цинковая пластина начала растворяться, а на медной стали выделяться пузырьки газа. Вольта предположил и показал, что по проволоке протекает электрический ток. Спустя три десятилетия электротехник Борис Семенович Якоби изобрел гальванический элемент новой конструкции. Это был сосуд, разделенный пористой перегородкой. В одном отделении медный электрод находился в растворе медного купороса, в другом цинковый - в растворе сульфата цинка. Сульфат цинка не взаимодействует с цинком, а сульфат меди - с медью. При замыкании цепи элемента электрический ток шел от цинкового электрода к медному. Через некоторое время медный электрод делался тяжелее, а цинковый - легче. Атом цинка отдавал иону меди свои заряды и переходил в раствор в виде иона, а ион меди, получив заряды, превращался в металлическую медь. Этот элемент давал постоянное напряжение - почти один вольт.