
- •Глава 7
- •324 • Функции систем жизнеобеспечения организма
- •7. Функции клеток крови. Гемостаз. Регуляция кроветворения. Трансфузиология • 325
- •326 • Функции систем жизнеобеспечения организма
- •328 • Функции систем жизнеобеспечения организма
- •7.1.5. Эритпропоэз
- •330 • Функции систем жизнеобеспечения организма
- •332 • Функции систем жизнеобеспечения организма
- •334 • Функции систем жизнеобеспечения организма
- •336 • Функции систем жизнеобеспечения организма
- •338 • Функции систем жизнеобеспечения организма
- •342 • Функции систем жизнеобеспечения организма
- •344 • Функции систем жизнеобеспечения организма
- •346 • Функции систем жизнеобеспечения организма
- •348 • Функции систем жизнеобеспечения организма
- •352 • Функции систем жизнеобеспечения организма
- •354 • Функции систем жизнеобеспечения организма
- •356 • Функции систем жизнеобеспечения организма
- •358 • Функции систем жизнеобеспечения организма
- •360 • Функции систем жизнеобеспечения организма
- •362 • Функции систем жизнеобеспечения организма
356 • Функции систем жизнеобеспечения организма
В ыход клеток в просвет синусоида возрастает под влиянием молекулярных регуляторов гемопоэза. Эритропоэтин стимулирует быстрый выход ретикулоцитов, КСФ и бактериальный эндотоксин — нейтрофилов. Эритропоэтин ускоряет «сборку» цитоскелета ретикулоцитов, находящихся в костном мозге, увеличивает их деформабельность, что облегчает их выход через отверстия стенки синусоидов в кровь. Регуляторы облегчают формирование отверстий в эндотелии, уменьшая внешнюю поверхность эндотелия костномозгового синуса, покрытого адвентициальными клетками. Например, инъекция животному эритропоэтина резко уменьшает его адвентициальный покров и ретикулоциты легко пересекают стенку синусоида.
В норме небольшая часть клеток не достигает стадии созревания, погибает в костном мозге и подвергается фагоцитозу макрофагами, располагающимися на наружной поверхности костномозговых синусоидов. Применительно к эритроидному ряду это явление называется неэффективным эритропоэзом, применительно к гранулоцитарному — неэффективным гра-нулопоэзом. Неэффективный гемопоэз охватывает от 2 до 10 % эритробла-стов и от 10 до 15 % костномозговых гранулоцитов. Их мембраны теряют сиаловые кислоты, в результате уменьшается отрицательный заряд мембраны и макрофаги легко фагоцитируют эти клетки. Неполноценные клетки в кровоток не поступают.
7.5.5. Особенности метаболизма кроветворной ткани
Масса костного мозга у взрослого человека составляет 4,6 % от массы тела, или 3,4 кг, в том числе масса красного костного мозга — 1,7 кг. Общее количество ядросодержащих клеток достигает в среднем 8,1 • 109 на кг от массы тела, а занимаемый ими объем колеблется от 1320 до 4192 мл.
Клетки костного мозга представляют одну из наиболее пролиферирую-щих тканей организма. Для осуществления митоза клеток используется энергия макроэргических соединений, образующихся в процессе окислительного фосфорилирования. Энергообмен в ткани костного мозга усиливается при повышении пролиферативной активности. Например, усиление эритропоэза после кровопотери активирует в костном мозге процессы аэробного окисления, увеличивает скорость потребления кислорода клетками, интенсивность дыхания и окислительного фосфорилирования в их митохондриях. Одновременно раскрываются нефункционирующие синусоиды и увеличивается кровоток в костном мозге, что укорачивает путь диффузии кислорода от отдельного сосуда к клетке. При активации гемопоэза в костном мозге возрастает интенсивность синтеза ядерных и мито-хондриальных ДНК, РНК и белков, увеличивается количество и площадь поверхности митохондрий, растет общее число рибосом и потребление свободных аминокислот. Например, усиление регенерации эритроцитов увеличивает потребление в ткани костного мозга лизина, серосодержащих, ароматических аминокислот, глутаминовой кислоты. При их дефиците регенерация красной крови замедляется. Усиление пролиферации гемопо-этических клеток требует повышения проницаемости их мембран, что обеспечивается нарастанием интенсивности перекисного окисления липи-дов. Активации гранулопоэза и, особенно, эритропоэза предшествует резорбция жировой ткани костного мозга. Высвобождающиеся из нее гемо-поэтические цитокины- КСФгм, КСФг активируют гемопоэз, а полиненасыщенные жирные кислоты используются в ходе гемопоэза для формирования клеток крови.
7. Функции клеток крови. Гемостаз. Регуляция кроветворения. Трансфузиология • 357
7 .6. Роль витаминов и микроэлементов в кроветворении
Витамин В12 и фолиевая кислота (витамин В9) необходимы для синтеза нуклеопротеинов в разных тканях организма, созревания и деления ядер эритроидных клеток в кроветворной ткани. При дефиците витаминов В12 и В9 в наиболее интенсивно делящейся ткани организма — эритроидной — раньше, чем в других, возникают нарушения, вызывающие анемию. При дефиците витамина В12 в костном мозге появляются большие ядросодержа-щие эритроидные клетки — мегалобласты, которые образуют с замедленной скоростью большие эритроциты — мегалоциты с резко укороченным периодом жизни. Замедление поступления эритроцитов в кровь и быстрое их разрушение ведет к анемии. Дефицит витамина В12 возникает в организме при утрате париетальными клетками желудка способности продуцировать «внутренний фактор» — гликопротеин (молекулярная масса 60 000). Фактор связывает витамин В12, поступающий с пищей, и предохраняет его от расщепления пищеварительными ферментами. Эти нарушения возникают при атрофии слизистой оболочки желудка, эпителия двенадцатиперстной кишки, часто наблюдающейся, например, у стариков. И хотя запаса витамина В12 в печени достаточно взрослому человеку на 1—5 лет, постепенное его истощение приводит к заболеванию. Суточная потребность в витамине В,2— 5 мкг, содержание в плазме крови — 150—450 мкг/л. В кишечнике комплекс гликопротеин—витамин В12 фиксируется специальными рецепторами слизистой оболочки тонкого кишечника, далее витамин поступает в интестинальные клетки, затем в кровь и переносится с помощью особых молекул — транскобаламинов (I, II, III типов). Транскобала-мины I и III типа продуцируются лейкоцитами, II — макрофагами. Поэтому при выраженном лейкоцитозе отмечается гипервитаминоз В12. Витамин В12 содержится в больших количествах в печени, почках, куриных яйцах.
Фолиевая кислота (витамин В9) поддерживает синтез ДНК в клетках костного мозга, благодаря обеспечению этого процесса одним из нуклеоти-дов — диокситимидилатом, образующимся в результате митилирования ди-оксиуридиловой кислоты в присутствии тетрагидрофолата (одной из редуцированных форм фолиевой кислоты). При дефиците витамина В9 в пище у человека уже через 1—6 мес нарушается синтез ДНК и деление эритроидных клеток, ускоряется разрушение эритроцитов, что ведет к анемии. Суточная потребность организма человека в фолиевой кислоте 500—700 мкг. Ее резерв в организме равен 5—10 мг, '/3 которого находится в печени. Фолиевой кислотой богаты овощи (шпинат), дрожжи, молоко.
1,2,5-дигидроксивитамин Б3 и ретиноловая кислота (производное витамина А) участвуют в организме человека в дифференциации кроветворных клеток до их зрелых форм. Витаминами АиБ богаты печень трески, тунца, сельдь, коровье молоко и сливочное масло.
Витамин В6 (пиридоксин) является кофактором (т. е. дополнительным фактором активности) фермента — синтетазы 5-аминолевулиновой кислоты (АЛК-синтетазы), участвующей в образовании гема в эритроидных клетках в ткани костного мозга (см. рис. 7.2). Дефицит витамина В6 в организме человека нарушает синтез гемоглобина и вызывает анемию. Витамином В6 богаты зерна злаков, капуста, картофель, молоко.
Витамин С поддерживает основные этапы эритропоэза, способствуя метаболизму фолиевой кислоты в эритробластах. Он участвует в метаболизме железа, повышая как его абсорбцию в желудочно-кишечном тракте, так и мобилизацию депонированного в клетках железа.
Витамин Е (ос-токоферол) и витамин РР защищают фосфатидилэтанол-