Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Krov_Tkachenko.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
703.49 Кб
Скачать

/// ФУНКЦИИ СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ ОРГАНИЗМА

320 • ФУНКЦИИ СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ ОРГАНИЗМА

В основе всех проявлений жизнедеятельности организма лежат процес­сы обмена веществ и энергии в клетках органов и тканей. Интенсивность этих процессов поддерживается на определенном уровне, необходимом для осуществления многообразных функций организма в различных условиях его существования. Для поддержания жизнедеятельности клеток на нор­мальном уровне организм обеспечивает относительное постоянство (гомео-стазис) внутренней среды (ее состав, осмотическое давление, кислотно-ос­новное равновесие, температуру).

Способность поддерживать постоянство количественного и качествен­ного состава внутренней среды организма является необходимым условием его нормальной жизнедеятельности. Гомеостазис организма нарушается под действием факторов внешней и внутренней среды и быстро восстанав­ливается благодаря функционированию и надежному регулированию фи­зиологических систем. Под физиологической системой понимают генети­чески детерминированную совокупность клеток, тканей и органов, кото­рые выполняют общие функции в организме (например, системы кровооб­ращения, дыхания, пищеварения, выделения и т. д.). В результате физио­логические системы позволяют клеткам организма существовать и выпол­нять свои функции в относительно постоянных (стабильных) условиях. При изменениях параметров внешней среды, например при перепадах тем­пературы, влажности, атмосферного давления, освещения, при недостаточ­ном поступлении питательных веществ и т. д., поддержание гомеостазиса осуществляется за счет включения механизмов регуляции соответствующих физиологических систем.

Обеспечение метаболических потребностей клеток осуществляется бла­годаря функции кровообращения. Движущаяся по сосудам кровь доставляет тканям поступившие из желудочно-кишечного тракта органические и не­органические вещества, а из легких — кислород, без которого не могут про­ходить окислительные процессы в клетках. Одновременно кровью к орга­нам выделения переносятся продукты обмена, подлежащие удалению из внутренней среды организма. С кровью к тканям доставляются также гу­моральные регуляторы функции клеток — гормоны, олигопептиды, медиа­торы, биологически активные промежуточные продукты обмена.

Для обеспечения защиты внутренней среды организма от проникнове­ния чужеродных веществ и болезнетворных агентов (микробов и их токси­нов) система крови находится в тесном функциональном взаимодействии с иммунной системой, продуцирующей клеточные и гуморальные факторы иммунитета.

Указанные физиологические процессы должны протекать при постоян­стве температуры организма, постоянстве рН крови и отделов желудочно-кишечного тракта, так как их отклонение вызовет нарушение гомеостазиса и, следовательно, необходимость корригирующего управления со стороны одной или нескольких физиологических систем.

Огромную роль в обеспечении жизнедеятельности организма играют сенсорные системы, поскольку зрение, слух, все виды чувствительности организма, обоняние, вкус являются непременными контролирующими деятельность организма или способствующими его адаптации к факторам окружающей среды системами.

Что касается репродуктивной функции человека, то она определяет и продолжение рода, и получение удовольствия от физического общения с партнером.

Взаимодействие компонентов сложных процессов жизнеобеспечения физиологических систем крови, дыхания, пищеварения, выделения, вод-

• 321

н о-солевого обмена, кислотно-основного равновесия, теплопродукции и теплоотдачи, иммунной, сенсорной систем, в конечном счете обеспечивает метаболические потребности организма.

Из дидактических соображений функции каждой анатомо-физиологи-ческой системы и механизма ее регуляции рассматриваются отдельно. За­кономерности интеграции деятельности различных систем на организмен-ном уровне изложены в IV разделе учебника.

Глава 7

Функции клеток крови. Гемостаз. Регуляция кроветворения. Основы трансфузиологии

Цельная кровь состоит из жидкой части (плазмы) (см. главу 1) и форменных элементов, к которым относят эритроциты, лейкоциты и кровяные пла­стинки — тромбоциты.

Функции крови: 1) транспортная — перенос газов (О2 и СО2), пластиче­ских (аминокислот, нуклеозидов, витаминов, минеральных веществ), энер­гетических (глюкоза, жиры) ресурсов к тканям, а конечных продуктов об­мена — к органам выделения (желудочно-кишечный тракт, легкие, почки, потовые железы, кожа); 2) гомеостатическая — поддержание температуры тела, кислотно-основного состояния организма, водно-солевого обмена, тканевого гомеостаза и регенерации тканей; 3) защитная — обеспечение иммунных реакций, кровяного и тканевого барьеров против инфекции; 4) регуляторная — гуморальной и гормональной регуляции функций раз­личных систем и тканей; 5) секреторная — образование клетками крови биологически активных веществ.

7.1. Функции эритроцитов

7.1.1. Функции и свойства эритроцитов

Эритроциты переносят О2 содержащимся в них гемоглобином от легких к тканям и СО2 от тканей к альвеолам легких. Функции эритроцитов обу­словлены высоким содержанием гемоглобина (95 % массы эритроцита), деформируемостью цитоскелета, благодаря чему эритроциты легко прони­кают через капилляры с диаметром меньше 3 мкм, хотя имеют диаметр от 7 до 8 мкм. Глюкоза является основным источником энергии в эритроци­те. Восстановление формы деформированного в капилляре эритроцита, ак­тивный мембранный транспорт катионов через мембрану эритроцита, син­тез глютатиона обеспечиваются за счет энергии анаэробного гликолиза в цикле Эмбдена—Мейергофа. В ходе метаболизма глюкозы, протекающего в эритроците по побочному пути гликолиза, контролируемого ферментом дифосфоглицератмутазой, в эритроците образуется 2,3-дифосфоглицерат (2,3-ДФГ). Основное значение 2,3-ДФГ заключается в уменьшении срод­ства гемоглобина к кислороду.

В цикле Эмбдена—Мейергофа расходуется 90 % потребляемой эритро­цитами глюкозы. Торможение гликолиза, возникающее, например, при старении эритроцита и уменьшающее в эритроците концентрацию АТФ, приводит к накоплению в ней ионов натрия и воды, ионов кальция, по­вреждению мембраны, что понижает механическую и осмотическую устой­чивость эритроцита, и стареющий эритроцит разрушается. Энергия глюко-

7. Функции клеток крови. Гемостаз. Регуляция кроветворения. Трансфузиология

323

ном, фосфатидилсирином и др.), гликолипидами и холестерином, а также белками их цитоскелета. В состав цитоскелета мембраны эритроцита вхо­дят белки — спектрин (основной белок цитоскелета), анкирин, актин, бел­ки полосы 4.1, 4.2, 4.9, тропомиозин, тропомодулин, аддуцин. Основой мембраны эритроцита является липидный бислой, пронизанный инте­гральными белками цитоскелета — гликопротеинами и белком полосы 3. Последние связаны с частью белковой сети цитоскелета — комплексом спектрин—актин—белок полосы 4.1, локализованным на цитоплазматиче-ской поверхности липидного бислоя мембраны эритроцита (рис. 7.1). Взаимодействие белкового цитоскелета с липидным бислоем мембраны обеспечивает стабильность структуры эритроцита, поведение эритроцита

зы в эритроците используется также в реакциях восстановления, защищающих компоненты эрит­роцита от окислительной денату­рации, которая нарушает их функцию. Благодаря реакциям восстановления атомы железа ге­моглобина поддерживаются в вос­становленной, т. е. двухвалент­ной форме, что препятствует пре­вращению гемоглобина в метге-моглобин, в котором железо окислено до трехвалентного, вследствие чего метгемоглобин неспособен к транспорту кисло­рода. Восстановление окисленно­го железа метгемоглобина до двухвалентного обеспечивается ферментом — метгемоглобинре-дуктазой. В восстановленном со­стоянии поддерживаются и серу-содержащие группы, входящие в мембрану эритроцита, гемогло­бин, ферменты, что сохраняет функциональные свойства этих структур.

Эритроциты имеют дисковид-ную, двояковогнутую форму, их поверхность — около 145 мкм2, а объем достигает 85—90 мкм3. Та­кое соотношение площади к объ­ему способствует деформабильно-сти (под последней понимают способность эритроцитов к обра­тимым изменениям размеров и формы) эритроцитов при их про­хождении через капилляры. Фор­ма и деформабильность эритро­цитов поддерживаются липидами мембран — фосфолипидами (гли-церофосфолипидами, сфинголи-пидами, фосфотидилэтанолами-

Рис. 7.1. Схема модели изменений цито­скелета мембраны эритроцита во время его обратимой деформации.

Обратимая деформация эритроцита изменяет лишь пространственную конфигурацию (сте­реометрию) эритроцита, следующую за изме­нением пространственного расположения мо­лекул цитоскелета. При этих изменениях фор­мы эритроцита площадь поверхности эритро­цита остается неизменной, а — положение молекул цитоскелета мембраны эритроцита при отсутствии его деформации. Молекулы спектрина находятся в свернутом состоянии;

б — деформация эритроцита, вызванная изме­нением положения молекул его цитоскелета. Молекулы спектрина раскручены и растянуты, но площадь мембраны эритроцита остается прежней (пояснения в тексте). Обозначения:

~ Молекулы спектрина, обозначенные двойными извитыми лентами. 0 — Спектрин-спектриновые взаимодействия ^ — Участки взаимодействия белка полосы 4.1, актина и спектрина.

\\\ — Внутренняя поверхность мембраны эритроцита.

11*

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]