Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Красуцкий ответы 1-12.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
5.03 Mб
Скачать

Вопрос 14.

Динамика популяций. Биологический потенциал. Рождаемость, смертность, эмиграция, иммиграция. Уравнение Ферхюльста-Пирла. Гомеостаз популяций. Модифицирующие и регулирующие факторы. Типы популяционной динамики.

Демографические показатели определяют численность популяции и основные тенденции в ее изменении. Если рождаемость превышает смертность (bd > 0), то популяция будет расти (если, конечно, изменения в результате иммиграции и эмиграции незначительны).

Теоретически любая популяция способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды. В такой гипотетической популяции r = bd (биотический потенциал) является постоянной положительной величиной, и популяция растет по экспоненциальному закону. Скорость увеличения тем больше, чем выше численность (N).

Предположим, что Вы хотите определить скорость изменения численности популяции в какой-то момент времени t. При первом приближении можно оценить величину N непосредственно перед моментом t и после него, например, за час до t и на час позже t. При этом очевидно, что в момент времени t1 (например, t1ч) истинная скорость на самом деле меньше, а в момент t2 (например, t + 1ч) больше, чем при использованной нами линейной экстраполяции. При анализе подобных случаев применяется дифференциальное исчисление, позволяющее вычислить мгновенную скорость изменения в любой момент времени. В этом случае экспоненциальный рост популяции записывается простым дифференциальным уравнением:

dN/dt = bN – dN = (b – d)N = rN

 

где bмгновенная удельная рождаемость, dмгновенная удельная смертность

 

Для любого момента времени (t) число организмов N1 зависит от их начального числа (в нулевой момент времени) N0, скорости увеличения r и продолжительности роста популяции от нулевого момента t.

Естественный рост популяции никогда не реализуется в форме экспоненты. Объясняется это тем, что не только в природных, но и в оптимальных экспериментальных условиях рост численности ограничен комплексом факторов внешней среды и реально складывается как результат соотношения меняющихся значений рождаемости и смертности. Поскольку r зависит от N, наступает такой момент времени, когда при определенной плотности насыщения К, рождаемость и смертность уравновешивают друг друга (r = 0) – кривая изменения численности приобретает S-образную форму (логистическая кривая).

Такая зависимость выражается логистическим уравнением Ферхюльста-Пирла:

dN/dt = rN[(KN)/K]

Общие изменения численности популяции складываются за счет четырех явлений: рождаемости, смертности, вселения и выселения особей (иммиграция и эмиграция).

Рождаемость – это число новых особей, появляющихся в популяции за единицу времени в расчете на определенное число ее членов.

Различают абсолютную и удельную рождаемость.

Абсолютная рождаемость – общее число родившихся особей. Например, если в популяции северных оленей, насчитывающей 16 тыс. голов, за год появилось 2 тыс. оленят, то это число и выражает абсолютную рождаемость.

Удельную рождаемостьсреднее изменение численности на особь за определенный интервал времени, и в данном случае она составит 0,125, т. е. один новорожденный на 8 членов популяции за год.

Величина рождаемости зависит от многих причин. Большое значение имеет доля особей, способных в данный период к размножению, что определяется соотношением полов и возрастных групп. Важна также частота последовательности генераций.

Так, среди насекомых различают моновольтинные и поливольтинные виды. Первые дают одну, вторые – несколько генераций за год. Например, у тлей за сезон насчитывается до 15 партеногенетических поколений.

Для величины рождаемости имеет значение также соотношение периода размножения и общей продолжительности жизни. Этот период для самок дрозофил составляет около 65%, для стадной саранчи шистоцерки – 15%, а для поденок – всего от 0,5 до 1% длительности их существования. Большую роль играет плодовитость особей. Однако размножаемость популяции, как правило, не бывает прямо пропорциональна плодовитости. Плодовитость сильно зависит от степени развития заботы о потомстве или обеспеченности яиц питательными материалами. Среди рыб наибольшее количество икринок выметывают виды с пелагической икрой – сельди, тресковые, камбаловые и др. Например, сахалинская сельдь продуцирует 38–46 тыс. мелких, в доли миллиметра, икринок. У лососевых, зарывающих икру в грунт, развивается меньшее число яиц, но более крупных размеров

Смертность в популяциях также зависит от многих причин: генетически запрограммированной длительности жизни особей, их генетической и физиологической полноценности, влияния неблагоприятных физических условий среды, воздействия хищников, паразитов, болезней и т. п.

Идеальный случай, если все особи одной генерации доживают до биологически предельного возраста, а затем в течение короткого срока отмирают. Средняя продолжительность жизни особи в таких популяциях высока и приближается к максимальной.

Наиболее часто встречающийся в природе вариант – повышенная гибель особей в ранний период жизни. Взрослые формы более защищены или выносливы. Средняя продолжительность жизни особи намного меньше максимальной.

Сравнительно редко наблюдается третий вариант изменения выживаемости поколений – относительно равномерный отсев из-за случайных причин на протяжении всего жизненного цикла, без резко выраженных критических периодов повышенной смертности.

Если вид подвергается в природе массовой неизбирательной элиминации, т. е. гибели от многочисленных врагов, избежать которых он бессилен, или подавляется другими экстремальными обстоятельствами, то единственным направлением отбора становится повышение размножаемости. В этом случае увеличивается вероятность случайного сохранения потомства и вид избегает вымирания.

При неизбирательной элиминации различия между особями не имеют значения для их выживания, поскольку мощность воздействия губительных факторов слишком высока.

При избирательной элиминации, когда смертность во многом определяется различиями между особями, отбор совершенствует разные формы адаптаций, повышающих сопротивляемость вида влиянию неблагоприятных условий. Таким образом, высокий биотический потенциал – эволюционный ответ вида на пресс неблагоприятных для него воздействий среды, вызывающих высокую смертность.

Американскими экологами Р. Макартуром и Э. Уилсоном предложена концепция К– и r-отбора. Они предложили различать две основные стратегии размножения организмов, обеспечивающие выживание в разных условиях, обозначив их через коэффициенты, входящие в уравнение роста популяций.

При r-стратегии отбор идет на высокую плодовитость, оборачиваемость поколений, способность к быстрому расселению, что позволяет видам быстро восстанавливать численность после резкого ее снижения.

При К-стратегии отбор совершенствует разные формы заботы о потомстве, что позволяет снизить плодовитость. Одновременно увеличивается продолжительность жизненных циклов и совершенствуются механизмы устойчивого поддержания численности в биоценозах.

Естественно, что между крайними формами имеются все промежуточные варианты.

Элементы К– и г-стратегий выживания прослеживаются во всех систематических группах организмов. Даже в пределах вида в популяциях, обитающих в разных условиях, усиливаются те или иные направления отбора.

Выселение особей из популяции или пополнение ее пришельцами – закономерное явление, основанное на одной из важнейших биологических черт вида – его расселительной способности.

В каждой популяции часть особей регулярно покидает ее, пополняя соседние или заселяя новые, еще не занятые видом территории. Этот процесс называют часто дисперсией популяции.

Расселительные функции выполняются в определенный период жизненного цикла: у насекомых в основном на стадии имаго, у большинства птиц и млекопитающих – подрастающим молодняком. У растений рассеиваются или разносятся семена и споры, сидячие животные распространяются посредством плавающих личинок или специальных поколений при метагенезе.

Каждый вид характеризуется своим темпом дисперсии. По подсчетам, у зайцев-беляков регулярно покидает места рождения примерно 1 % молодняка, тогда как в популяциях большой синицы в среднем лишь треть молодых остается в той местности, где они вывелись из яиц.

Дисперсия обычно не направлена, расселение особей происходит в самых разных направлениях от мест отрождения.

Расселительная дисперсия служит средством связи между популяциями. Она повышается при увеличении плотности населения.

В период депрессии численности, наоборот, усиливается поток вселенцев в популяцию. У оседлых животных с хорошо выраженными территориальными инстинктами агрессивное поведение по отношению к пришельцам в период низкой численности популяции ослабевает, и вселенцы занимают свободные участки.

Ряд популяций, занимающих малопригодные места обитания, часто не в состоянии поддерживать свою численность за счет размножения и могут сохраняться преимущественно за счет иммиграции. Такие популяции В.Н. Беклемишев называл зависимыми.

Расселительные перемещения, по Н.П. Наумову, приводят к обмену особей между популяциями, увеличивают единство и общую устойчивость вида, так как те адаптации, которые возникли в местных условиях, но имеют общее значение, могут постепенно распространяться в пределах всего видового ареала. Проникновение расселяющихся особей на не занятые еще видом территории, заселение их и образование новых популяций называют инвазией.

Высокий потенциал размножения играет большую роль в выживании видов. Популяции, сведенные к низкому уровню численности, могут быстро восстановиться при благоприятной перемене условий. Некоторые виды только массовым размножением могут противостоять выеданию их различными потребителями или угрозе вытеснения конкурентами. Высокая размножаемость способствует быстрому освоению видом новых пространств.

Однако безграничное размножение таит в себе и большую опасность для любой популяции, так как может привести к быстрому подрыву ресурсов среды, нехватке пищи, убежищ, пространства и т. п., что неминуемо повлечет за собой общее ослабление популяции. Перенаселенность настолько неблагоприятна для любого вида, что в ходе эволюции у разных форм выработались в результате естественного отбора самые разнообразные механизмы, способствующие предотвращению избытка особей и поддержанию определенного уровня плотности популяций.

Современная теория рассматривает динамику численности популяций как авторегулируемый процесс. Любой популяции организмов в конкретных условиях свойствен определенный средний уровень численности, вокруг которого происходят колебания. Отклонения от этого среднего уровня имеют разный размах, но в норме после каждого отклонения численность популяции начинает изменяться с обратным знаком.

Модификация – это случайное отклонение численности, возникающее в результате воздействия самых разнообразных факторов, не связанных с плотностью популяции.

Регуляция – это возврат популяции после отклонения к исходному состоянию, совершающийся под влиянием факторов, сила действия которых определяется плотностью популяции.

Модифицирующие факторы (т.е. факторы, не зависящие от плотности), вызывая изменение численности популяций, сами не испытывают влияния этих изменений. Действие их, таким образом, одностороннее. К ним относятся все абиотические влияния среды на организмы, на качество и количество их корма и т. п. Благоприятная погодная обстановка может послужить причиной массовой вспышки размножения вида и перенаселения занимаемой им территории, как, например, в случае стадных саранчовых. Отрицательное воздействие модифицирующих факторов, наоборот, снижает численность популяции иногда до полного ее исчезновения.

Регулирующие факторы (т.е. факторы, зависящие от плотности) не просто изменяют численность популяции, а сглаживают ее колебания, приводя после очередного отклонения от оптимума к прежнему уровню. Это происходит потому, что эффект их воздействия тем сильнее, чем выше плотность популяции. В качестве регулирующих сил выступают межвидовые и внутривидовые отношения организмов.