
- •Введение
- •Тема 5. Электронные приборы
- •Лекция 18. Физические свойства полупроводниковых материалов. Диоды
- •1. Электропроводность металлов и диэлектриков
- •2. Электропроводность полупроводников
- •Электропроводность примесных
- •4. Электронно-дырочный переход
- •4.1. Электронно-дырочный переход при отсутствии внешнего электрического поля
- •Электронно-дырочный переход под воздействием внешнего электрического поля
- •5. Основные параметры и типы
- •Контрольные вопросы и задачи
- •Лекция 19. Транзисторы.
- •Классификация транзисторов
- •Биполярные транзисторы
- •Модуль коэффициента передачи определяется выражением
- •3. Полевые транзисторы
- •Общие сведения об igbt транзисторах
- •Интегральные микросхемы
- •Лекция 20. Силовые полупроводниковые приборы
- •Динисторы
- •Тиристоры
- •3. Симисторы
- •4. Статический индукционный транзистор
- •Тема 6. Электронные устройства лекция 21. Резистивные усилители сигналов низкой частоты
- •Классификация усилителей
- •Принцип работы резистивного усилителя
- •2.1 Схемы смещения и температурной стабилизации
- •Модуль коэффициента усиления определяется выражением:
- •Обозначим
- •4. Дифференциальный усилитель
- •При кu → ∞ коэффициент усиления схемы с оос определяется простым отношением
- •Частотные свойства оу
- •Электрические фильтры
- •Фильтр нижних частот
- •2.2.Фильтр верхних частот
- •Ачх фильтра приведена на рис. 22.5, б.
- •2.3 Полосовой фильтр
- •Избирательные усилители
- •Коэффициент передачи моста Вина в цепи пос определяется выражением
- •Лекция 23. Усилители мощности
- •Однотактный усилитель мощности
- •2. Двухтактный усилитель мощности
- •Лекция 24. Генераторы электрических сигналов
- •1. Назначение и классификация генераторов
- •2. Принципы построения генераторов
- •3. Генераторы гармонических колебаний
- •Трехточечные схемы генераторов
- •Лекция 25. Импульсные устройства
- •1. Общие сведения об импульсных сигналах
- •2. Электронные ключи
- •3. Компараторы
- •4. Формирующие цепи
- •Триггеры
- •Лекция 26. Генераторы импульсных сигналов
- •Мультивибраторы
- •2. Генераторы линейно изменяющегося напряжения
- •Если напряжение на входе оу постоянное, то на его выходе формируется линейно изменяющееся напряжение
- •Линейно убывает и в момент t3 принимает значение:
- •Далее значение uглин периодически изменяется от –0,79 в до 3,2 в, а uос от –2,32 в до 4,31 в.
- •Лекция 27. Источники питания электронных устройств
- •Общая характеристика вторичных
- •2. Однофазные выпрямители тока
- •2.1 Однофазные выпрямители
- •Трехфазные выпрямители
- •Управляемые выпрямители
- •3. Сглаживающие фильтры
- •3. Стабилизаторы напряжения
- •Лекция 28. Применение электронных устройств в технике птм
- •Электронные регуляторы напряжения
- •Электронные схемы управления стартером
- •3. Электронные системы зажигания
- •3.1. Основные этапы развития электронных систем зажигания
- •3.2. Датчики углового положения коленчатого вала двс
- •3.3. Коммутаторы
- •3.3.1. Коммутаторы с нормируемой скважностью
- •Тема 7. Цифровые устройства лекция 29. Введение в цифровую электронику
- •Общие сведения о цифровых сигналах
- •Основные операции и элементы
- •Основные теоремы алгебры логики
- •Булевы функции (функции логики)
- •Для элемента "или-не"
- •Для элемента "и-не"
- •Лекция 30. Комбинационные устройства
- •1. Шифраторы
- •Дешифраторы, преобразователи кодов,
- •Сумматоры
- •Цифровые компараторы
- •Арифметико – логические устройства
- •Лекция 31. Триггеры
- •Общие сведения и классификация триггеров
- •Rs триггер на элементах “или – не”
- •Rs триггер на элементах “и – не”
- •Синхронные rs-триггеры
- •5. Универсальные триггеры
- •Лекция 32. Последовательностные устройства
- •1. Счетчики импульсов
- •Регистры
- •Цифровые запоминающие устройства
- •Лекция 33. Цифро-аналоговые и аналого- цифровые преобразователи
- •Цифро-аналоговые преобразователи
- •2. Аналого-цифровые преобразователи
- •2.1. Ацп последовательного счета.
- •2.1. Ацп поразрядного уравновешивания
- •Ацп одновременного считывания
- •Лекция 34. Микропроцессоры
- •Общие сведения
- •Структура микропроцессора
- •Секционированные микропроцессоры
- •Заключение
- •Тема 5. Электронные приборы 5
- •Тема 6. Электронные устройства 47
- •Тема 7. Цифровые устройства 169
Сумматоры
Сумматоры предназначены для выполнения арифметических действий с двоичными числами (сложения, вычитания, умножения и деления) и относятся к арифметическим устройствам. Арифметические устройства воспринимают переменные "0" и "1" как цифры и выполняет действия над ними по законам двоичной арифметики:
(30.1)
В
(30.1) последнее действие предполагает,
что "1"
переносится в старший разряд. Такие
действия реализует логическая ячейка
"исключающее
ИЛИ". Ее
схемное обозначение приведено на рис.
30.4, а.
На рисунке
и
– i-е
разряды складываемых чисел,
– сумма.
Суммирование
двоичных чисел выполняется поразрядно,
от младшего разряда
к старшему. Сумма может быть записана
одним числом -
(т.е. "0"
или
"1")
или двумя – Pi;
Si.
Функция Рi
называется переносом в старший разряд.
Рассмотрим пример. Выполним сложение двух цифр: 7 + 5
Важнейшая
из арифметических операций – сложение.
Вычитание – это сложение, в котором
вычитаемое вводится в дополнительном
коде. Дополнительный код образуется
как разность
.
Например, цифра 7
в прямом коде имеет вид 0111. Ее дополнительный
код образуется как разность 16
– 7 = 9, т. е .
1001. Тогда вычитание можно продемонстрировать
следующими примерами:
.
Или
;
.
Переносом старшего разряда пренебрегают. Умножение и деление могут выполняться как последовательное сложение и вычитание.
В зависимости от способа обработки чисел сумматоры могут быть последовательного или параллельного типа. В последовательных сумматорах сложение чисел производится поразрядно, последовательно во времени. В сумматорах параллельного типа сложение всех разрядов происходит одновременно.
Простейшим суммирующим элементом является одноразрядный полусумматор. Он имеет два входа – А и В для двух слагаемых и два выхода – S и P (рис. 30.4, б). Полусумматор обозначается буквами HS (half-sum). Таблица истинности полусумматора приведена на рис. 30.4, в. Таблица показывает, что функция S полностью совпадает с действиями (30.1). Поэтому можно записать:
.
Отсюда следует, что в состав полусумматора должны входить два элемента: "исключающее ИЛИ" и "И" (рис. 30.4, г).
Полный одноразрядный сумматор имеет три входа и два выхода (рис. 30.5, а). На третий вход подается результат переноса предыдущего разряда. На рис. 30.5, б приведена таблица истинности сумматора. Схема одноразрядного сумматора содержит два полусумматора и элемент ИЛИ (рис. 30.5, в).
На
рис. 30.6, а
приведена схема четырехразрядного
параллельного сумматора с последовательным
переносом. Число сумматоров равно числу
разрядов. Выход переноса каждого
предыдущего сумматора соединен со
входом переноса последующего сумматора.
Вход переноса сумматора первого разряда
заземлен (установлен логический "0").
Слагаемые
и
складываются во всех разрядах одновременно,
а перенос
поступает с окончанием сложения в
предыдущем разряде Pi-1.
Сумматоры
выпускаются в виде готовых изделий в
составе многих серий цифровых микросхем.
Например, К155
ИМ3 –
четырехразрядный параллельный сумматор
(рис. 30.6, б).
Вход переноса
имеется только у младшего разряда, а
выход только у старшего Р4.
Это позволяет наращивать микросхемы и
использовать их для выполнения различных
арифметических операций.