
- •Введение
- •Тема 5. Электронные приборы
- •Лекция 18. Физические свойства полупроводниковых материалов. Диоды
- •1. Электропроводность металлов и диэлектриков
- •2. Электропроводность полупроводников
- •Электропроводность примесных
- •4. Электронно-дырочный переход
- •4.1. Электронно-дырочный переход при отсутствии внешнего электрического поля
- •Электронно-дырочный переход под воздействием внешнего электрического поля
- •5. Основные параметры и типы
- •Контрольные вопросы и задачи
- •Лекция 19. Транзисторы.
- •Классификация транзисторов
- •Биполярные транзисторы
- •Модуль коэффициента передачи определяется выражением
- •3. Полевые транзисторы
- •Общие сведения об igbt транзисторах
- •Интегральные микросхемы
- •Лекция 20. Силовые полупроводниковые приборы
- •Динисторы
- •Тиристоры
- •3. Симисторы
- •4. Статический индукционный транзистор
- •Тема 6. Электронные устройства лекция 21. Резистивные усилители сигналов низкой частоты
- •Классификация усилителей
- •Принцип работы резистивного усилителя
- •2.1 Схемы смещения и температурной стабилизации
- •Модуль коэффициента усиления определяется выражением:
- •Обозначим
- •4. Дифференциальный усилитель
- •При кu → ∞ коэффициент усиления схемы с оос определяется простым отношением
- •Частотные свойства оу
- •Электрические фильтры
- •Фильтр нижних частот
- •2.2.Фильтр верхних частот
- •Ачх фильтра приведена на рис. 22.5, б.
- •2.3 Полосовой фильтр
- •Избирательные усилители
- •Коэффициент передачи моста Вина в цепи пос определяется выражением
- •Лекция 23. Усилители мощности
- •Однотактный усилитель мощности
- •2. Двухтактный усилитель мощности
- •Лекция 24. Генераторы электрических сигналов
- •1. Назначение и классификация генераторов
- •2. Принципы построения генераторов
- •3. Генераторы гармонических колебаний
- •Трехточечные схемы генераторов
- •Лекция 25. Импульсные устройства
- •1. Общие сведения об импульсных сигналах
- •2. Электронные ключи
- •3. Компараторы
- •4. Формирующие цепи
- •Триггеры
- •Лекция 26. Генераторы импульсных сигналов
- •Мультивибраторы
- •2. Генераторы линейно изменяющегося напряжения
- •Если напряжение на входе оу постоянное, то на его выходе формируется линейно изменяющееся напряжение
- •Линейно убывает и в момент t3 принимает значение:
- •Далее значение uглин периодически изменяется от –0,79 в до 3,2 в, а uос от –2,32 в до 4,31 в.
- •Лекция 27. Источники питания электронных устройств
- •Общая характеристика вторичных
- •2. Однофазные выпрямители тока
- •2.1 Однофазные выпрямители
- •Трехфазные выпрямители
- •Управляемые выпрямители
- •3. Сглаживающие фильтры
- •3. Стабилизаторы напряжения
- •Лекция 28. Применение электронных устройств в технике птм
- •Электронные регуляторы напряжения
- •Электронные схемы управления стартером
- •3. Электронные системы зажигания
- •3.1. Основные этапы развития электронных систем зажигания
- •3.2. Датчики углового положения коленчатого вала двс
- •3.3. Коммутаторы
- •3.3.1. Коммутаторы с нормируемой скважностью
- •Тема 7. Цифровые устройства лекция 29. Введение в цифровую электронику
- •Общие сведения о цифровых сигналах
- •Основные операции и элементы
- •Основные теоремы алгебры логики
- •Булевы функции (функции логики)
- •Для элемента "или-не"
- •Для элемента "и-не"
- •Лекция 30. Комбинационные устройства
- •1. Шифраторы
- •Дешифраторы, преобразователи кодов,
- •Сумматоры
- •Цифровые компараторы
- •Арифметико – логические устройства
- •Лекция 31. Триггеры
- •Общие сведения и классификация триггеров
- •Rs триггер на элементах “или – не”
- •Rs триггер на элементах “и – не”
- •Синхронные rs-триггеры
- •5. Универсальные триггеры
- •Лекция 32. Последовательностные устройства
- •1. Счетчики импульсов
- •Регистры
- •Цифровые запоминающие устройства
- •Лекция 33. Цифро-аналоговые и аналого- цифровые преобразователи
- •Цифро-аналоговые преобразователи
- •2. Аналого-цифровые преобразователи
- •2.1. Ацп последовательного счета.
- •2.1. Ацп поразрядного уравновешивания
- •Ацп одновременного считывания
- •Лекция 34. Микропроцессоры
- •Общие сведения
- •Структура микропроцессора
- •Секционированные микропроцессоры
- •Заключение
- •Тема 5. Электронные приборы 5
- •Тема 6. Электронные устройства 47
- •Тема 7. Цифровые устройства 169
При кu → ∞ коэффициент усиления схемы с оос определяется простым отношением
.
(21.18)
Видим, что КUoc определяется лишь отношением сопротивлений (R1 + R2)/R1 и не зависит от КU, т.е. все дестабилизирующие факторы ликвидированы. В практических схемах значения сопротивлений следует выбирать в пределах 103 106 Ом. Например, при R1 = 2103 Ом и R2 = 2105 Ом. КUос = 101. Теперь передаточная характеристика ОУ с ОС будет иметь достаточно большую область линейного участка. Для наших примеров диапазон входного сигнала расширяется до значения 0,1В (пунктир на рис. 21.10, а).
Схема инвертирующего ОУ с ООС приведена на рис. 21.10, в. В схеме входной сигнал и сигнал ООС поступают на инвертирующий вход ОУ. При этом происходит сложение токов Iвх и Ioc. Коэффициент усиления схемы определяется отношением
.
(21.19)
Знак минус указывает, что фазы входного и выходного сигналов противоположны.
Таким образом, введение ООС в схему ОУ позволяет повысить стабильность коэффициента усиления и расширить линейный участок передаточной характеристики.
Полоса пропускания ОУ с ОС лежит в диапазоне от 0 до fмакс, причем,
.
(21.20)
КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАЧИ
21.1. На какие классы разделяют усилители сигналов по их частотным свойствам?
21.2. В чем заключается отличие УПТ от УНЧ и можно ли считать их взаимозаменяемыми?
21.3. Чем отличаются резистивные усилители от резонансных?
21.4. Будет ли изменяться передаточная характеристика усилительного каскада по схеме с общим эмиттером, если изменять коэффициент передачи тока базы?
21.5. Используя графики рис. 21.2 проверьте, как изменяется коэффициент усиления каскада при изменении Ек и Rк.
21.6. Определите сопротивление Rб в схеме смещения с фиксацией тока базы, если Ек = 10 В, ток коллектора в режиме покоя Iк = 5,0 мА, коэффициент передачи тока базы β = 100, а обратный ток коллектора Iкэо = 50 мкА.
21.7. Определите значение сопротивлений делителя в схеме смещения с фиксацией напряжения базы Uб, если Ек = 10 В, Iбп = 49,5 мкА, а Uбп = 0,13 В.
21.8. В усилителе по схеме рис. 21.3, б известны Ек = 10 В, Rк = 1000 Ом, Rн = 200 Ом, Iбп = 49,5 мкА, Uбп = 0,13 В. Определите Rвх, Rвых и КU, полагая β = 100. (Обратным током коллектора пренебречь).
21.9. В усилителе по схеме с общим коллектором (рис. 21.7, а) известны Rн = Rэ = 200
Ом, Uбп = 0,13 В, Iбп = 49,5 мкА, Iкэо 50 мкА, а Iкп = 5 мА. Определите Rвх и КU.
21.10. Определите КU усилителя по условию задачи 21.8, если между выходом усилителя и нагрузкой включен каскад по условию задачи 21.9.
21.11. Каким фактором определяется название дифференциального усилителя?
21.12. Почему в схеме дифференциального усилителя Rэ не влияет на КU?
21.13. Усилитель по схеме рис. 21.10,б имеет КU = 100. Определите верхнюю граничную частоту АЧХ усилителя, если Um.вых = 10 В, частота единичного усиления ОУ f1 = 2 МГц, а νн = 1 В/мкС.
ЛЕКЦИЯ 22. ИЗБИРАТЕЛЬНЫЕ УСИЛИТЕЛИ
Согласно определению классификации, избирательные усилители обеспечивают усиление сигналов со спектром достаточно узким относительно средней частоты f0. Для них справедливо условие . Это условие определяет требования к АЧХ избирательного усилителя – она должна выделять достаточно узкую полосу частот (рис 21.1, в). По приведенному признаку избирательные усилители часто называются полосовыми.
Для построения усилителей с полосовой АЧХ необходимо учитывать частотные свойства применяемых в схеме активных элементов, а также использовать цепи с явно выраженными частотными свойствами – фильтры. Поэтому в лекции предварительно рассматриваются частотные свойства ОУ, принципы построения фильтров, а затем схемы и основные свойства избирательных усилителей.