
- •Введение
- •Тема 5. Электронные приборы
- •Лекция 18. Физические свойства полупроводниковых материалов. Диоды
- •1. Электропроводность металлов и диэлектриков
- •2. Электропроводность полупроводников
- •Электропроводность примесных
- •4. Электронно-дырочный переход
- •4.1. Электронно-дырочный переход при отсутствии внешнего электрического поля
- •Электронно-дырочный переход под воздействием внешнего электрического поля
- •5. Основные параметры и типы
- •Контрольные вопросы и задачи
- •Лекция 19. Транзисторы.
- •Классификация транзисторов
- •Биполярные транзисторы
- •Модуль коэффициента передачи определяется выражением
- •3. Полевые транзисторы
- •Общие сведения об igbt транзисторах
- •Интегральные микросхемы
- •Лекция 20. Силовые полупроводниковые приборы
- •Динисторы
- •Тиристоры
- •3. Симисторы
- •4. Статический индукционный транзистор
- •Тема 6. Электронные устройства лекция 21. Резистивные усилители сигналов низкой частоты
- •Классификация усилителей
- •Принцип работы резистивного усилителя
- •2.1 Схемы смещения и температурной стабилизации
- •Модуль коэффициента усиления определяется выражением:
- •Обозначим
- •4. Дифференциальный усилитель
- •При кu → ∞ коэффициент усиления схемы с оос определяется простым отношением
- •Частотные свойства оу
- •Электрические фильтры
- •Фильтр нижних частот
- •2.2.Фильтр верхних частот
- •Ачх фильтра приведена на рис. 22.5, б.
- •2.3 Полосовой фильтр
- •Избирательные усилители
- •Коэффициент передачи моста Вина в цепи пос определяется выражением
- •Лекция 23. Усилители мощности
- •Однотактный усилитель мощности
- •2. Двухтактный усилитель мощности
- •Лекция 24. Генераторы электрических сигналов
- •1. Назначение и классификация генераторов
- •2. Принципы построения генераторов
- •3. Генераторы гармонических колебаний
- •Трехточечные схемы генераторов
- •Лекция 25. Импульсные устройства
- •1. Общие сведения об импульсных сигналах
- •2. Электронные ключи
- •3. Компараторы
- •4. Формирующие цепи
- •Триггеры
- •Лекция 26. Генераторы импульсных сигналов
- •Мультивибраторы
- •2. Генераторы линейно изменяющегося напряжения
- •Если напряжение на входе оу постоянное, то на его выходе формируется линейно изменяющееся напряжение
- •Линейно убывает и в момент t3 принимает значение:
- •Далее значение uглин периодически изменяется от –0,79 в до 3,2 в, а uос от –2,32 в до 4,31 в.
- •Лекция 27. Источники питания электронных устройств
- •Общая характеристика вторичных
- •2. Однофазные выпрямители тока
- •2.1 Однофазные выпрямители
- •Трехфазные выпрямители
- •Управляемые выпрямители
- •3. Сглаживающие фильтры
- •3. Стабилизаторы напряжения
- •Лекция 28. Применение электронных устройств в технике птм
- •Электронные регуляторы напряжения
- •Электронные схемы управления стартером
- •3. Электронные системы зажигания
- •3.1. Основные этапы развития электронных систем зажигания
- •3.2. Датчики углового положения коленчатого вала двс
- •3.3. Коммутаторы
- •3.3.1. Коммутаторы с нормируемой скважностью
- •Тема 7. Цифровые устройства лекция 29. Введение в цифровую электронику
- •Общие сведения о цифровых сигналах
- •Основные операции и элементы
- •Основные теоремы алгебры логики
- •Булевы функции (функции логики)
- •Для элемента "или-не"
- •Для элемента "и-не"
- •Лекция 30. Комбинационные устройства
- •1. Шифраторы
- •Дешифраторы, преобразователи кодов,
- •Сумматоры
- •Цифровые компараторы
- •Арифметико – логические устройства
- •Лекция 31. Триггеры
- •Общие сведения и классификация триггеров
- •Rs триггер на элементах “или – не”
- •Rs триггер на элементах “и – не”
- •Синхронные rs-триггеры
- •5. Универсальные триггеры
- •Лекция 32. Последовательностные устройства
- •1. Счетчики импульсов
- •Регистры
- •Цифровые запоминающие устройства
- •Лекция 33. Цифро-аналоговые и аналого- цифровые преобразователи
- •Цифро-аналоговые преобразователи
- •2. Аналого-цифровые преобразователи
- •2.1. Ацп последовательного счета.
- •2.1. Ацп поразрядного уравновешивания
- •Ацп одновременного считывания
- •Лекция 34. Микропроцессоры
- •Общие сведения
- •Структура микропроцессора
- •Секционированные микропроцессоры
- •Заключение
- •Тема 5. Электронные приборы 5
- •Тема 6. Электронные устройства 47
- •Тема 7. Цифровые устройства 169
Модуль коэффициента усиления определяется выражением:
(21.7)
Очевидно, что с ростом частоты ω модуль коэффициента усиления |КВ(jω)| уменьшается.
В области нижних частот существенное влияние оказывает сопротивление емкости конденсатора CP. Влиянием Сэкв пренебрегают. Выражение для коэффициента усиления принимает вид:
,
(21.8)
где
Таким образом, в области нижних частот, с уменьшением частоты коэффициент усиления падает. Сопротивление емкости конденсатора СР вместе с Rвых образует делитель напряжения. С уменьшением частоты сопротивление XCp увеличивается. Увеличивается и падение напряжения на нем. Напряжение на RВЫХ падает.
УСИЛИТЕЛЬ ПО СХЕМЕ С ОБЩИМ КОЛЛЕКТОРОМ
Усилитель по схеме с общим коллектором (ОК) (рис. 21.7, а) обладает большим значением Rвх и малым Rвых. Этим он выгодно отличается от каскада с общим эмиттером. Однако коэффициент усиления по напряжению КU 1, поэтому каскад с ОК нашел применение как буферный. Он включается между маломощным источником сигнала и каскадом с ОЭ либо между каскадом с ОЭ и низкоомной нагрузкой.
В схеме каскада с ОК резистор Rб образует цепь смещения с фиксацией тока покоя базы. Коллектор транзистора подключен к источнику питания Ек. В эмиттерную цепь введен резистор Rэ. Он обеспечивает стабилизацию режима работы транзистора за счет ООС по току. Нагрузка RH подключается к эмиттерной цепи через разделительный конденсатор СР. Последний исключает попадание постоянной составляющей тока эмиттера в нагрузку. При таком включении приращение входного и выходного сигналов совпадают по знаку. Значит, усилитель по схеме с общим коллектором неинвертирующий.
Входная цепь по переменной составляющей включает участок база-эмиттер с сопротивлением Rбэ, резистор Rэ и параллельно соединенный с ним резистор RH. Поэтому
.
Обозначим
.
Тогда
.
Теперь легко определить входное сопротивление каскада:
.
(21.13)
Например, пусть в схеме рис. 21.7, а известны величины: Rбэ = 103Ом; = 50; Rэ = RН = 400Ом.
Тогда по (21.13) Rвх = 11200 Ом.
Определим коэффициент усиления по напряжению:
.
(21.14)
Для приведенного примера КU = 0,91.
Чтобы обеспечить наилучшие условия передачи мощности сигнала в нагрузку, значение Rэ, как правило, принимают равным RH.
В заключение отметим, что сигнал на выходе каскада с ОК повторяет форму входного сигнала (КU близок к единице, инверсия отсутствует). Именно поэтому за каскадом закрепилось название эмиттерный повторитель.
4. Дифференциальный усилитель
Рассмотренный усилитель по схеме с общим эмиттером широко распространен, но имеет ряд недостатков: малое входное и большое выходное сопротивления, зависимость коэффициента усиления от параметров нагрузки. Эти недостатки частично или полностью исключены в дифференциальном усилителе.
Простейшая схема дифференциального каскада приведена на рис.21.7, б. Транзисторы Т1 и Т2, а также резисторы Rк1 и Rк2 образуют мост. В диагональ 1 - 1' моста включены источники питания + Ек и -Ек, а также Rэ. В диагональ 2 - 2' включена нагрузка - RH. Для нормальной работы каскада мост должен быть строго сбалансирован, т.е. Rк1 = Rк2, а транзисторы должны иметь одинаковые параметры, т.е. должны быть изготовлены по одной технологии, на одном кристалле. Поэтому дифференциальные каскады изготовляют в заводских условиях в виде микросхем.
Пусть
.
Токи транзисторов Т1
и Т2
создают на
сопротивлении Rэ
падение
напряжения URэ,
причем,
.
(21.9)
Это напряжение
является напряжением смещения для обоих
транзисторов. Так как параметры
транзисторов одинаковы, то и токи
транзисторов одинаковы, т.е.
,
,
.
Равные коллекторные токи создают на
равных сопротивлениях Rк1
и Rк2
равные
падения напряжений Uк1=Uк2.
Поэтому
.
Резистор Rэ образует цепь ООС по току, обеспечивает температурную стабилизацию и устраняет дрейф нуля (отклонение Uвых от нуля за счет нестабильности Ек).
Источник сигнала
может подключаться к входу одного из
транзисторов (при этом вход другого
транзистора заземляется) либо между
базами двух транзисторов. Рассмотрим
первый вариант включения. Пусть источник
сигнала е(t)
включен к входу транзистора Т1,
т.е. Uвх1
= е. Вход
транзистора Т2
заземлен.
Пусть также е
0. Под воздействием входного сигнала
увеличиваются ток базы
;
ток коллектора
и
ток эмиттера
первого транзистора. Приращение тока
эмиттера Iэ1
вызывает приращение падения напряжения
URэ
(см.8.5), т.е. напряжения ООС на участке
база-эмиттер транзистора Т2.
Это приводит
к уменьшению тока Iэ2
так, что
.
Следовательно,
;
;
.
Таким образом, благодаря ООС по току воздействие сигнала на вход одного из транзисторов вызывает равные по величине и противоположные по знаку изменения токов и напряжений в обоих транзисторах.
Отметим, что при подаче сигнала на вход транзистора Т2 физические процессы каскада не изменятся. Однако полярность выходного сигнала будет противоположной входному, всвязи с этим, вход транзистора Т1 называют прямым, а вход транзистора Т2 – инверсным. Кроме того, к входам транзисторов можно подключать независимые источники сигналов Uвх1 и Uвх2. В этом случае выходной сигнал (в классе А) может быть найден методом суперпозиции от воздействия каждого из сигналов.
Оценим основные
параметры каскада. Для этого учтем, что
за счет ООС всегда
,
а приращения тока базы протекают через
входные цепи (участки база - эмиттер)
двух транзисторов. Значит
.
(21.10)
Тогда
.
Если
RH=
,
то
.
(21.11)
Из (21.11) следует, что ООС не влияет на коэффициент усиления каскада. Следовательно, Rэ может быть достаточно большим.
Входное сопротивление каскада определим с учетом (21.10)
.
(21.12)
Аналогично
найдем, что и
.
Таким образом, дифференциальный каскад при его сравнении с усилителем по схеме с общим эмиттером имеет в два раза большие сопротивления Rвх и Rвых, а его коэффициент усиления не зависит от значения Rэ.
5. УНЧ НА ИМС
Современные разработчики электронной аппаратуры стремятся использовать готовые функциональные узлы в виде ИМС. Схемные решения ИМС тщательно проработаны и обеспечивают высокое качество аппаратуры. Предприятия, выпускающие микросхемы, заинтересованы в их сбыте. Поэтому они стремятся разработать универсальные микросхемы, которые можно применять в качестве различных функциональных узлов. Это повышает их спрос. Одной из таких ИМС является операционный усилитель (ОУ).
ОУ имеет чрезвычайно высокий коэффициент усиления по напряжению (десятки и даже сотни тысяч), большое входное сопротивление (сотни кОм), малое выходное сопротивление (десятки - сотни Ом). Он усиливает широкий спектр частот, вплоть до постоянной составляющей.
Схемное обозначение ОУ приведено на рис. 21.8, а. В обозначении треугольник символизирует усиление и показывает направление со входа на выход. У ОУ пять основных выводов: два для подключения питания, два для подачи входных сигналов и один для снятия выходного сигнала. Один из входов называют неинвертирующим. При подаче сигнала на этот вход выходной сигнал имеет ту же фазу, что и входной. Второй вход ОУ инвертирующий. Полярность выходного сигнала противоположна полярности сигнала, поданного на этот вход. Инвертирующий вход обозначается кружком или знаком «-». Входная цепь, обеспечивающая независимую подачу двух входных сигналов, называется дифференциальной. Дифференциальным называется и ОУ с двумя независимыми входами.
В последние годы
часто применяют схемное обозначение
ОУ аналогично символам элементов
цифровой техники (см. рис. 21.8, б).
Знак
обозначает усиление, а
– достаточно большое значение коэффициента
усиления. Выводы ±Е
предназначены для подключения
симметричного источника питания, выводы
FC
– для подсоединения элементов частотной
коррекции, а выводы NC
– элементов балансировки усилителя.
На рис. 21.8, в приведена упрощенная структурная схема ОУ. Схема включает симметричный дифференциальный каскад (по схеме рис.21.7, а), несимметричный дифференциальный каскад (у него сигнал снимается с коллектора Т2) и эмиттерный повторитель. Первый каскад обеспечивает высокое входное сопротивление ОУ. Для этого он переводится в режим малых токов. Коэффициент усиления этого каскада обычно не превышает десяти единиц. Второй каскад предназначен для перехода к несимметричному выходу и обеспечивает основное усиление (КU ≈ 100). Оконечный каскад представляет собой усилитель мощности. Его коэффициент усиления лежит в пределах нескольких единиц, но этот каскад обеспечивает малое выходное сопротивление ОУ и высокую нагрузочную способность. Общий коэффициент усиления ОУ определяется произведением коэффициентов усиления отдельных каскадов, а потому достигает больших величин.
Схема включения дифференциального ОУ для усиления сигналов приведена на рис. 21.9, а. Для этой схемы выходное напряжение ОУ определяется по формуле
(21.15)
где КU – коэффициент усиления ОУ.
Если
один из входов ОУ соединить с общим
выводом (заземлить), то можно реализовать
два варианта усилителей с одним входом,
один из которых будет инвертирующим
(рис. 21.9, б),
а второй – неинвертирующим (рис. 21.9,
в).
Для инвертирующего ОУ выходное напряжение
равно
а для неинвертирующего
Если оба входа ОУ соединить вместе, то получим схему с синфазным входом. Сигнал, поступающий на вход такой схемы, также называют синфазным. Для синфазного сигнала в соответствии с (21.15) выходное напряжение должно быть равно нулю. В реальных ОУ выходное напряжение отлично от нуля, хотя имеет малое значение, поэтому ОУ снабжаются схемами балансировки.
Динамические свойства ОУ определяются двумя параметрами: частотой единичного усиления f1 и максимальной скоростью нарастания выходного напряжения vUвых макс.
В предыдущей лекции было показано, что с ростом частоты модуль коэффициента передачи тока базы транзистора |β| уменьшается и появляется запаздывающий фазовый сдвиг. Это приводит к зависимости КU ОУ от частоты, а именно: с ростом частоты КU также уменьшается. Частота, на которой коэффициент усиления ОУ уменьшается до единицы, называется частотой единичного усиления f1. Значение f1 определяет частотную полосу ОУ. У большинства ОУ f1 лежит в диапазоне от десятых долей мегагерца до нескольких десятков мегагерц.
Максимальная скорость нарастания выходного напряжения vUвых макс – это отношение изменения Uвых от 10 до 90% номинального значения ко времени, за которое произошло это изменение, если на вход подан идеальный скачок напряжения
vUвых макс = dUвых/dt [В/мкС].
Ограниченное значение vUвых макс может приводить к искажению сигнала на выходе ОУ, если его частота больше максимально допустимой fмакс, причем,
,
(21.16)
где νн – номинальное значение скорости нарастания выходного напряжения, Um вых – максимальное значение выходного сигнала.
Недостатки операционного усилителя:
1. Коэффициент усиления ОУ КU меняется от экземпляра к экземпляру
в очень широких пределах. Например, для ОУ серии К153УД1 КU = 20000 ÷ 80000.
2. Коэффициент усиления КU сильно зависит от температуры окружающей среды. Это обусловлено зависимостью от температуры коэффициента передачи тока базы транзисторов -.
3. Большое значение КU ограничивает линейный участок передаточной характеристики ОУ очень малыми напряжениями по входу.
Приведенные недостатки сильно затрудняют применение ОУ непосредственно в качестве усилителя. Рассмотрим влияние третьего пункта
более подробно.
График передаточной характеристики приведен на рис. 21.10, а. За счет симметричного питания передаточная характеристика ОУ симметрична. В области линейного участка напряжение на выходе пропорционально входному и может изменяться от – Uвых макс до + Uвых макс. Коэффициентом пропорциональности является КU. Величина Uвых макс = (0,9 ÷ 0,95)·Еп. Напряжение на входе Uвх = (Uвх1-Uвх2).
Если напряжение питания Еп и КU известны, то легко определить границы линейного участка по входу ± ∆Uгр. Например, если КU =20000, а максимальное напряжение на выходе ОУ - ± 10 В, то ∆Uгр = ± 0,5 мВ. При увеличении входного напряжения за эти границы напряжение на выходе будет оставаться неизменным и равным Uвых макс. Появляются нелинейные искажения сигнала. Таким образом, малый диапазон изменений амплитуды входного сигнала не позволяет применять ОУ для усиления сигналов в большом числе практических случаев.
Значительно уменьшить недостатки ОУ позволяет применение ОС. Схема ОУ с ОС приведена на рис. 21.10, б. Входной сигнал подается на прямой вход ИМС. С выхода ОУ напряжение ОС через делитель R1R2 поступает на инвертирующий вход ОУ
,
(21.17)
где
Выходное напряжение ОУ определяется разностью Uвх - UОС. Такая ОС называется отрицательной (ООС). Учитывая это, запишем ряд последовательных преобразований:
Теперь очевидно, что