Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на экзамн по статистики.docx
Скачиваний:
8
Добавлен:
01.04.2025
Размер:
116.51 Кб
Скачать

Основные правила построения таблицы.

Статистические таблицы, как средство наглядного и компактного представления цифровой информации, должны быть статистически правильно оформлены.

1. Таблица должна быть компактной и содержать только те данные, которые непосредственно отражают исследуемое явление в статике и динамике и необходимы для познания его сущности.

2. Заголовок таблицы и названия граф и строк должны быть четкими, краткими, лаконичными, представлять собой законченное целое, органично вписывающееся в содержание текста.

3. Информация, располагаемая в столбцах (графах) таблицы, завершается итоговой строкой. Существуют различные способы соединения слагаемых граф с их итогом:

• строка «Итого» или «Всего» завершает статистическую таблицу;

• итоговая строка располагается первой строкой таблицы и соединяется с совокупностью ее слагаемых словами «В том числе».

4. Если названия отдельных граф повторяются между собой, содержат повторяющиеся термины или несут единую смысловую нагрузку, то необходимо им присвоить объединяющий заголовок.

5. Графы и строки полезно нумеровать.

6. Взаимосвязанные данные, характеризующие одну из сторон анализируемого явления целесообразно располагать в соседних друг с другом графах.

7. Графы и строки должны содержать единицы измерения, соответствующие поставленным в подлежащем и сказуемом показателям.

8. Числа целесообразнее, по возможности, округлять. Если все числа одной и той же графы или строки даны с одним десятичным знаком, а одно из чисел имеет точно два знака после запятой, то числа с одним знаком после запятой следует дополнять нулем, тем самым подчеркнув их одинаковую точность.

9. В случае необходимости дополнительной информации - разъяснений к таблице, могут даваться примечания.

В18 Статистический показатель есть количественно-качественная обобщающая характеристика какого-либо свойства статистической совокупности в условиях конкретного места и времени. Этим он отличается от индивидуальных значений признака (вариант). Например, средняя заработная плата работников предприятия – статистический показатель, а заработная плата конкретного работника – это индивидуальное значение признака (варианта).

В отличие от индивидуального значения признака статистический показатель может быть получен только расчетным путем. Это может быть простой подсчет единиц совокупности, суммирование их значений признак, или более сложные расчеты.

В соответствии с определением статистический показатель имеет определенную структуру, в нем различают качественную и количественную стороны.

Качественная сторона статистического показателя определяется признаком, который подлежит изучению и отражается в названии показателя, количественная сторона - в численном значении показателя.

Еще одной особенностью статистических показателей является то, что они всегда привязаны к конкретным обстоятельствам места и времени.

Система статистических показателей - это совокупность статистических показателей, отражающая объективно существующие взаимосвязи между явлениями. Система статистических показателей позволяет получить целостную статистическую характеристику социально-экономического явления.

На практике для отражения разнообразных сторон социально-экономических явлений и процессов используются разнообразные статистические показатели, которые можно классифицировать следующим образом:

Плановые показатели - отражают директивную функцию, ориентированы на выполнение поставленных задач, учётные – показывают реальное состояние изучаемого явления, а прогностические – его возможное состояние в будущем.

Индивидуальные – характеризуют отдельный объект или отдельную единицу совокупности – предприятие, домохозяйство и др. Примером индивидуальных статистических показателей может быть объем продаж торговой фирмы, численность работающих предприятия и т.д.

Сводные (обобщающие) показатели исчисляются по всей совокупности в целом, являются научными абстракциями и занимают особое место в познании статистических закономерностей.

Абсолютные – исходная первичная форма выражения статистических показателей.

Относительные – производные, вторичные показатели по отношению к абсолютным, выражающие определённые соотношения между количественными характеристиками статистических совокупностей.

Средние – наиболее распространённая форма статистических показателей, характеризующая наиболее типичный уровень явления. Рассчитываются на единицу статистической совокупности или на единицу признака.

В19. Абсолютные статистические величины имеют большое теоретическое и практическое значение. Они бывают индивидуальными и суммарными. Как обобщающие показатели абсолютные величины являются всегда суммарными величинами, которые могут быть показателями численности совокупности (число предприятий, число рабочих, число студентов) и показателями объема признаков (заработная плата рабочих, объем выпуска товаров и услуг и т.п.).

Абсолютные величины - именованные числа, имеющие определенную размерность и единицы измерения. Они характеризуют показатели на определенный момент времени или за период. На момент времени абсолютные величины показывают состояние явления (численность населения, студентов, вузов, предприятий); за период - результаты процесса (объем производства товаров и услуг, товарооборота и т.д.). В первом случае абсолютные величины являются моментными показателями, во втором - интервальными. Такое деление абсолютных величин имеет большое значение при расчете средних уровней в рядах динамики.

В зависимости от причин и целей в статистике применяются натуральные, условно-натуральные, денежные и трудовые единицы измерения. Натуральные единицы измерения могут быть простыми (например, тонны - перевезенный груз) и составными (например, тонна-километры - грузооборот).

В международной практике используются следующие натуральные единицы измерения: метры, километры, мили, литры, баррели, штуки, килограммы и т.д.

Условно-натуральные измерители применяются в тех случаях, когда какой-либо продукт имеет несколько разновидностей. Тогда общий объем можно определить исходя из потребительского свойства всех разновидностей продукта. Так, мыло разных сортов переводится в условное мыло с 40%-ным содержанием жирных кислот; консервы различного объема переводятся в условные консервные банки объемом 353,4 см3; различные виды органического топлива - в условное топливо с теплотой сгорания 29,3 мДж/кг (7000 ккал/кг). Перевод в условно-натуральные единицы измерения осуществляется на основе специальных коэффициентов, рассчитываемых как отношение потребительских свойств отдельных разновидностей продукта к его эталонному значению.

Абсолютные статистические величины широко используют в анализе и прогнозировании состояния и развития явлений общественной жизни.

На основе абсолютных величин исчисляют относительные величины.

В20. Относительные величины (показатели) характеризуют количественное соотношение сравниваемых абсолютных величин. Их получают в результате сравнения двух показателей. Числитель отношения - сравниваемая величина, ее называют текущей или отчетной величиной, знаменатель отношения называют базой сравнения или основанием сравнения. Как правило, базу сравнения принимают равной 1, 100, 1000, 10000. Если основание равно 1, то относительная величина показывает, во сколько раз текущая величина больше базисной, или какую долю от базисной она составляет, и выражается в коэффициентах. Если база сравнения равна 100, то относительная величина выражена в процентах (%), если база сравнения равна 1000 - в промилле (0), 10000 - в продецимилле (%00).

Сопоставляемые величины могут быть одноименными и разноименными. Если сравнивают одноименные величины, то их выражают в коэффициентах, процентах и промилле. При сопоставлении разноименных величин наименования относительных величин образуются от наименований сравниваемых величин: плотность населения страны - чел./км2; урожайность - ц/га и т.д.

В зависимости от задач, содержания и познавательного значения выражаемых количественных соотношений различают следующие виды относительных показателей:

планового задания (договорных обязательств);выполнения плана (договорных обязательств);динамики;

структуры; интенсивности и уровня экономического развития; координации; сравнения.

В21. Графики – это средства обобщения статистической информации. Графический метод

особая знаковая система, знаковый язык.

Графики в статистике имеют не только иллюстративное значение, они позволяют

получить дополнительные знания о предмете исследования, которые в цифровом

варианте остаются скрытыми, невыявленными. Любое статистическое исследование

на основе какого-либо метода в конечном итоге дополняется использованием

графического метода.

Схема статистических графиков по форме графического способа

Схема статистических графиков по способу и задачам построения

Основные правила построения графиков

Каждый график должен содержать следующие основные элементы:

Графический образ – геометрические знаки,

совокупность точек, линий, фигур, с помощью которых изображаются статистические

величины; язык графики.

Поле графика – пространство, в котором

размещаются геометрические знаки.

Система координат – необходима для размещения

геометрических знаков на поле графика.

Масштабные ориентиры – определяются масштабом и масштабной шкалой.

· Масштаб – мера перевода числовой величины в графическую.

· Масштабная шкала – линия,

отдельные точки которой могут быть прочитаны как определенные числа. Шкалы

бывают равномерными и неравномерными. Масштаб равномерной шкалы

– это длина отрезка, принятого за единицу измерения и измеренного в каких-либо

определенных мерах.

В22. Средняя величина – обобщающая характеристика изучаемого признака в исследуемой совокупности, т.е. замена множества различных, индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений.

^ Средняя величина всегда именованная, имеет ту же размерность, что и признак у отдельных единиц совокупности.

Средняя, рассчитанная по совокупности в целом, называется общей средней, она отражает общие черты изучаемого явления.

Средняя, для каждой группы, - групповой средней, которая дает характеристику размера явления, складывающаяся в конкретных условиях данной группы.

^ Объективность и типичность статистической средней обеспечивается лишь при определенных условиях:

Средняя должна вычисляться для качественно однородной совокупности.

Для исчисления средних должны быть использованы массовые данные.

Средние величины применяются для оценки достигнутого уровня изучаемого показателя, при анализе и планировании производственно-хозяйственной деятельности:

предприятий, фирм, банков, других хозяйственных единиц;

используется при выявлении взаимосвязей явлений при прогнозировании;

при расчете нормативов.

В экономических исследованиях и плановых расчетах применяются две категории средних:

степенные средние (средняя арифметическая, средняя гармоническая, средняя квадратическая, средняя геометрическая)

структурные средние (мода, медиана)

В23. Мода и медиана – структурные средние величины, порядок их определения. Кроме степенных средних в статистике для относительной характеристики величины варьирующего признака и внутреннего строения рядов распределения пользуются структурными средними, которые представлены ,в основном, модой и медианой.

Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:

где:   — значение моды

 — нижняя граница модального интервала

 — величина интервала

 — частота модального интервала

 — частота интервала, предшествующего модальному

 — частота интервала, следующего за модальным

Медиана — это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.

Для определения медианы в дискретном ряду при наличии частот сначала вычисляют полусумму частот , а затем определяют, какое значение варианта приходится на нее. (Если отсортированный ряд содержит нечетное число признаков, то номер медианы вычисляют по формуле:

Ме = (n(число признаков в совокупности) + 1)/2,

в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда).

При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле:

где:

— искомая медиана

— нижняя граница интервала, который содержит медиану

— величина интервала

— сумма частот или число членов ряда

- сумма накопленных частот интервалов, предшествующих медианном

— частота медианного интервала

В24.Показатели вариации, их значение в статистике. Различие индивидуальных значений признака внутри изучаемой совокупности называется вариацией признака. Средняя величина – это абстрактная обобщающая характеристика признака изучаемой совокупности, но она не показывает строения совокупности. Для характеристики совокупностей и исчисленных средних величин важно знать, какая вариация признака скрывается за средними. В некоторых случаях отдельные значения признака близко примыкают к средней арифметической и мало от нее отличаются, в таких случаях средняя хорошо представляет всю совокупность. В других случаях, наоборот, отдельные значения далеко отстоят от средней, и средняя плохо представляет совокупность. Колеблемость отдельных значений, степень их близости к средней характеризуют показатели вариации.