
- •Понятие предмета химия. Понятие материи, атома, молекулы и вещества.
- •Периодический закон и система Менделеева. Валентность и степень окисления элемента.
- •Классификация веществ. Важнейшие классы неорганических соединений и их химические свойства.
- •Металлы. Физические и химические свойства.
- •Неметаллы. Основные физические и химические свойства.
- •Подразделение элементов на s, p, d, f семейства.
- •Химия s элемента. Общая характеристика, валентности и степени окисления, нахождение в природе, получение.
- •Элементы первой а подгруппы. Нахождение в природе. Свойства, получение, применение.
- •Элементы второй а подгруппы. Нахождение в природе. Свойства, получение, применение.
- •Оксиды и гидроксиды s элементов. Получение, свойства.
- •Негашеная и гашеная известь. Получение, затвердевание, применение.
- •Жесткость воды и методы ее устранения.
- •Общая характеристика р элементов 3а-4а подгрупп (строение, валентности, степени окисления, нахождение в природе, получение).
- •Элементы 3а подгруппы. Нахождение в природе. Свойства, получение, применение.
- •Элементы 4а подгруппы. Нахождение в природе. Свойства, получение, применение.
- •Общая характеристика d элементов, строение, валентности, степени окисления, получение, химические свойства.
- •Подгруппа марганца. Общая характеристика элементов. Нахождение в природе. Свойства, получение, применение.
- •Семейство железа. Общая характеристика элементов. Нахождение в природе. Свойства, получение, применение.
- •Подгруппа хрома. Общая характеристика элементов. Нахождение в природе. Свойства, получение, применение.
- •Закон Авогадро. Закон постоянства состава. Закон сохранения массы. Основные газовые законы. Уравнение Менделеева-Клайперона.
- •Квантовые числа( главное, орбитальное, магнитное, спиновое: определение, обозначение, характеристики.
- •Поверхностные явления и адсорбция. Дисперстные системы, их классификация.
- •Закон Рауля. Триоскопическая и эбуллиоскопическая константы. Определение, физический смысл. Изотонический коэффициент. Осмос и осмотическое давление. Коллоидные растворы и их…
- •Гидролиз солей. Его физический смысл. Константа и степень гидролиза. Влияние на интенсивность гидролиза различных факторов. Правило Бертолле-Михайленко.
- •Коррозия металлов. Виды коррозии. Методы защиты от коррозии. Электролиз. Законы Фарадея. Области применения электролиза (получение металлов, гальванопластика).
- •Теоретические основы аналитической химии. Качественный и количественный химические анализы.
- •37)Органические и неорганические полимеры, методы получения, строение, свойства. Олигомеры и биополимеры.
Подразделение элементов на s, p, d, f семейства.
Электронные семейства элементов - это связь между положением элемента в периодической системе и электронным строением его атомов. От того, какой энергетический подуровень заполняется последним, различают 4 электронных семейства элементов: s, p, d и f:
1. s-элементы – семейство элементов, у которых при заполнении электронных уровней электронами, последний электрон идет на внешний s-подуровень. Это первая и вторая группа главной подгруппы. На внешнем энергетическом уровне у них 1 или 2 электрона.
Например, Na: 14s2 2s2 p6 3s1, валентным является один s-электрон.
2. У p-элементов последний электрон идет на p-подуровень внешнего уровня. Это элементы III - VIII групп главной подгруппы каждого периода.
3. У d-элементов сначала заполняется s-подуровень внешнего уровня, а последний электрон идет на d-подуровень предвнешнего уровня. d-Элементы находятся в побочных подгруппах п. с. (У d-элементов возможен проскок электронов с s-подуровня внешнего уровня на свободную d-орбиталь предвнешнего уровня, если это энергетически выгодно.)
4. У f-Элементов последний электрон идет на f-подуровень предпредвнешнего уровня. К ним относятся лантаноиды и актиноиды.
Химия s элемента. Общая характеристика, валентности и степени окисления, нахождение в природе, получение.
s-элементы – семейство элементов, у которых при заполнении электронных уровней электронами, последний электрон идет на внешний s-подуровень. Это первая и вторая группа главной подгруппы. На внешнем энергетическом уровне у них 1 или 2 электрона.
К s-элементам относят элементы IA-группы – щелочные металлы. Электронная формула валентной оболочки атомов щелочных металлов ns1. Устойчивая степень окисления равна +1. Элементы IА-группы обладают сходными свойствами из-за сходного строения электронной оболочки. При увеличении радиуса в группе Li-Fr связь валентного электрона с ядром слабеет и уменьшается энергия ионизации. Атомы щелочных элементов легко отдают свой валентный электрон, что характеризуют их как сильные восстановители.
Восстановительные свойства усиливаются с возрастанием порядкового номера. Все элементы относятся к активным металлам, поэтому они встречаются в природе исключительно в виде соединений.
Элементы первой а подгруппы. Нахождение в природе. Свойства, получение, применение.
Металлы главной подгруппы первой группы - литий, натрий, калий, рубидий, цезий, франций- называются щелочными элементами. Вследствие очень легкой окисляемости щелочные элементы встречаются в природе исключительно в виде соединений. Натрий и калий принадлежат к распространенным элементам: содержание каждого из них в земной коре равно приблизительно 2 %. Значительно меньше, чем натрий и калий, распространены литий, рубидий и цезий. Чаще других встречается литий, но содержащие его минералы редко образуют большие скопления. Рубидий и цезий содержатся в небольших количествах в некоторых литиевых минералах. Все известные изотопы франция радиоактивны и быстро распадаются. Натрий и литий получают электролизом расплавов их соединений, калий - восстановлением из расплавов KOH или KCL натрием, рубидий и цезий - восстановлением из их хлоридов кальцием. Щелочные металлы характеризуются незначительной твердостью, малой плотностью и низкими температурами плавления и кипения. Наименьшую плотность имеет литий, самую низкую температуру плавления – франций. Щелочные металлы и их соединения широко используются в технике. Литий применяется в ядерной энергетике. По значимости в современной технике этот металл является одним из важнейших редких элементов. Цезий и рубидий применяются для изготовления фотоэлементов. Гидроксид натрия в больших количествах потребляется для очистки продуктов переработки нефти. Так же широко применяется в мыловаренной, бумажной, текстильной и других отраслях промышленности.