- •1. Цели и задачи дисциплины
- •2. Требования к уровню освоения содержания дисциплины
- •3.Трудоемкость дисциплины по видам занятий
- •4. Содержание дисциплины
- •4.1. Разделы дисциплины и виды занятий (в часах)
- •4.2. Содержание разделов
- •I семестр
- •Раздел 1. Элементы векторной алгебры и аналитической геометрии
- •Раздел 2. Введение в математический анализ: функция, теория пределов, непрерывность
- •Раздел 3. Дифференциальное исчисление функции одной переменной и его приложения
- •Раздел 4. Функции нескольких переменных
- •II семестр Раздел 5. Элементы теории функции комплексного переменного и высшей алгебры
- •Раздел 6. Неопределенный интеграл
- •Раздел 7. Определенный интеграл
- •Раздел 8. Кратные, криволинейные, поверхностные интегралы
- •III семестр
- •Раздел 9. Элементы теории поля
- •Раздел 10. Обыкновенные дифференциальные уравнения
- •5. Перечень практических занятий
- •I семестр
- •II семестр
- •III семестр
- •IV семестр
- •5 Самостоятельная работа студентов (срс)
- •6.Методические указания к самостоятельной работе студентов.
- •6.1.Линейная алгебра Определители и их вычисления
- •6.2.Аналитическая геометрия
- •Плоскость
- •Прямая в пространстве
- •Кривые второго порядка
- •6.3. Введение в математический анализ
- •Дифференциальные исчисления функций одной переменной
- •6.4. Дифференциальное исчисление функций нескольких переменных
- •6.5. Исследование функций на непрерывность
- •6.6. Неопределенные интегралы Многочлены. Теорема Безу
- •Неопределённый интеграл
- •Первообразная функция.
- •Свойства неопределённого интеграла.
- •Непосредственное интегрирование
- •Основные методы интегрирования
- •Основные методы интегрирования
- •Метод интегрирования по частям
- •Интегрирование некоторых функций, содержащих квадратный трехчлен
- •Универсальная подстановка
- •Вычисление интегралов вида
- •Интегрирование биноминального дифференциала.
- •Интегрирование рациональных дробей по методу Остроградского
- •6.7. Определенные интегралы Понятие определенного интнграла
- •Формула Ньютона-Лейбница
- •Вычисление площади Фигур
- •Площадь в полярных координатах
- •Вычисление объемов тел
- •Площадь поверхности вращения
- •Вычисление работы переменной силы
- •Вычисление центра тяжести плоской линии
- •Центр тяжести плоской фигуры
- •6.8. Криволинейные, кратные и поверхностные интегралы Объём цилиндрического тела. Двойные интегралы
- •Определение двойного интеграла
- •Теорема существования двойного интеграла
- •Свойства двойного интеграла
- •Теорема об оценке двойного интеграла
- •Замена переменных в двойном интеграле
- •Вычисление двойного интеграла в полярной системе координат
- •Тогда .
- •Решение
- •Поверхностные интегралы Определение поверхностного интеграла I рода
- •Поверхностные интегралы II рода
- •Вычисление поверхностного интеграла II рода
- •Формула Остроградского Связь между поверхностным интегралом и тройным интегралом
- •Связь поверхностного интеграла с криволинейным интегралом. Теорема Стокса
- •7.Контрольные работы
- •7.1.Контрольная работа №1
- •7.2.Контрольная работа №2
- •7.3. Контрольная работа №3
- •7.4.Контрольная работа №4
- •Задание 6. Вычислить криволинейный интеграл первого
- •Задание 8. Вычислить поверхностные интегралы второго рода
- •Задание 9 . Найти площадь поверхности
- •8. Учебно-методическое обеспечение дисциплины
- •9.Карта обеспеченности студентов учебниками, учебными пособиями, учебно-методическими материалами по дисциплине "Математика".
- •10. Перечень контрольных вопросов
- •Семестр II
- •Семестр III
- •Семестр IV
- •1.Цели и задачи дисциплины……………………….............1
5. Перечень практических занятий
I семестр
Занятие 1
Свойства и вычисление определителей различных порядков. Решение линейных и алгебраических уравнений по формулам Крамера.Матрицы и действия над ними. Обращение матрицы. Решение систем линейных уравнений матричным способом.
Линейные операции над векторами. Скалярное произведение. Действия над векторами в координатной форме.Векторное и смешанное произведения векторов.
Простейшие задачи аналитической геометрии. Прямая на плоскости. Решение задач на прямую с использованием различных форм уравнения прямой на плоскости.Кривые второго порядка. Окружность, эллипс, гипербола, парабола. Приведение уравнений 2-го порядка к каноническому виду.Плоскость. Взаимное расположение плоскостей. Прямая в пространстве. Прямая и плоскость, пересечение, угол между ними.
Функция. Обзор свойств основных элементарных функций. Построение графиков элементарных функций путем преобразования графиков основных элементарных функций. Построение графиков в полярной системе координат.Предел функции непрерывного аргумента. Вычисление пределов алгебраических выражений.Первый и второй замечательные пределы, следствия. Эквивалентные величины.Непрерывность функции. Точки разрыва. Схематическое построение графиков разрывных функций.
Занятие 2
Производная. Правила дифференцирования. Дифференцирование сложных функций. Логарифмическое дифференцирование. Дифференцирование функций, заданных параметрически и неявно. Дифференциал и применение его к приближенным вычислениям. Производные высших порядков. Касательная и нормаль к кривой.
Правило Лопиталя. Экстремум функции. Наибольшее и наименьшее значение функции на отрезке. Задачи на отыскание наибольшего и наименьшего значения величин. Полное исследование функций и построение графиков.
Частные производные. Полный дифференциал, его связь с частными производными.
Дифференцирование сложной функции нескольких переменных.
Экстремум функции нескольких переменных. Необходимые условия экстремума.
Наибольшее и наименьшее значения функции двух переменных в замкнутой области.
II семестр
Занятие 3
Комплексные числа и действия над ними.
Простейшие приемы интегрирования. Интегрирование по частям и заменой переменной. Разложение рациональной дроби на простейшие дроби. Интегрирование простейших рациональных дробей. Интегрирование дробно-рациональных функций.
Интегрирование некоторых тригонометрических выражений. Интегрирование некоторых иррациональных функций.
Занятие 4
Вычисление определенного интеграла по формуле Ньютона-Лейбница. Замена переменной. Интегрирование по частям.Вычисление несобственных интегралов I-го и II-го рода. Сходимость.Вычисление площадей плоских фигур в декартовых и полярных координатах. Вычисление длин дуг, объемов тел вращения. Решение задач физики и механики.
Вычисление двойных интегралов в декартовых и полярных координатах. Вычисление объемов тел, площадей плоских фигур с помощью двойных интегралов. Некоторые задачи механики.
