Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учебное пособие для заочников 1 курс.docx
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
2.97 Mб
Скачать

7.4.Контрольная работа №4

Кратные, криволинейные и поверхностные интегралы

Задание 1.

Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.

1.1. 1.2.

1.3. 1.4.

1.5. 1.6.

1.7. 1.8.

1.9. 1.10.

1.11. +

1.12. +

1.13. +

1.14. +

1.15. +

Задание 2.

Вычислить:

2.1. 2.2.

2.3. 2.4.

2.5. 2.6.

2.7. 2.8.

2.9. 2.10.

2.11. , D:

2.12. , D:

2.13. , D:

2.14. , D:

2.15. , D:

Задание 3.

Найти площадь фигуры, ограниченной линиями:

3.1. , , , .

3.2. , , , .

3.3. , , .

3.4. , , ( ), .

3.5. , .

3.6. , , .

3.7. , , , .

3.8. , .

3.9. , , .

3.10. , .

3.11. , , , .

3.12. , , , .

3.13. , , , .

3.14. , , , .

3.15. , , , .

Задание 4.

Вычислить:

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11. ; T: , , , .

4.12. ; T: , , , , , .

4.13. ; T: , , , , , .

4.14. ; T: , , , .

4.15. ; T: , , , , .

Задание 5.

Вычислить объём тела, ограниченного указанными поверхностями, с помощью двойного интеграла. Сделать чертежи данного тела и его проекции на плоскость XOY:

5.1. , , .

5.2. , , .

5.3. , , .

5.4. , , .

5.5. , , , .

5.6. , , .

5.7. , , , .

5.8. , , , .

5.9. , , , .

5.10. , , , , .

5.11. , , .

5.12. , , ( ).

5.13. , , .

5.14. , , .

5.15. , , ( ).

Задание 6. Вычислить криволинейный интеграл первого

рода от функции f (x , y) по длине дуги L

уравнениям y = (х) , a x b

6.1 f (x , y)= x ; L : y=ln x ; 1 x 2

6.2 f (x , y) = y ; L : y = 2x от точки А(0;0)

до точки В(2; 2)

6. 3 f (x , y) = ;L : отрезок прямой

соединяющий точки

A( 0;-2) и B (4;0)

6.4 f (x , y) = x + y ;L : граница треугольника с

вершинами A(1;0) , B(0;1)

6.5 f (x , y) = ;L : -отрезок прямой

соединяющий точки

О (0;0) и A(1;2)

6.6 f (x , y) = x+2y ;L : отрезок прямой от

точки A(1;1) до точки B(5;3)

6.7 f (x , y) = ;L : y = - от точки

A(0;0) до точки B(1;0,6)

6.8 f (x , y) = ;L : отрезок прямой

соединяющий точки A(-1;0)

и B (2;0)

6.9 f (x, y) = 2x-y ;L : отрезок прямой

соединяющий точки

A(2;2) и B(1;-3)

6.10 f (x, y) = x ;L : y = x , 0 x 4

6.1 1 ;L : контур параллелограмма с

вершинами A(0,1) , B(3,0) ,

C(3,2) , D(0,2)

6.12 ;L : окружность x + y + z = a

x + y + z = 0

6.13 ;L : контур треугольника с

вершинами A(0,0) , B(1,0) , C(0,1)

6.14 ; L : x + y = a , x 0, y 0

6.15 ;L : дуга x + y = x - y ; x 0 , y 0

Задание 7. Вычислить поверхностные интегралы

первого рода по

указанным поверхностям :

7.1П : плоскость x + 2y +3z = 6 , лежащая в октанте f(x ,y ,z) = 6x + 4y + 3z

7.2П : y = , отсеченная плоскостями x = 0 ,

x = a ;f(x ,y, z) = x + 3y + z + 5

7.3П : часть плоскости x + y + z =a , лежащая в октанте f(x,y,z) = 1

7.4П : z = ,отсеченная плоскостями y = 0 , y = 5 f(x,y,z) =

7.5П : часть плоскости 6x + 4y + 3z = 12 , лежащая в

октанте , f(x,y,z) = z + 2x +

7.6П : z = , отсеченная плоскостью z =3 ;

f(x,y,z) = xyz

7.7П : часть плоскости x + y + z =1 , лежащая в

октанте , f(x,y,z) = 2x + y -

7.8П: граница тела z 1; f(x,y,z) =x + y

7.9П : часть плоскости + + = 1 , лежащая в октанте f(x,y,z) = x + y + z

7.10П : часть плоскости 6x + 4y + 3z = 12 , лежащая в октанте f(x,y,z) = z + 2x +

7.11 П : полусфера z = ; f(x,y,z) = x

7.12 П : поверхность параболоида вращения

z = (x + y ) , ограниченная плоскостями z =0 ,

z = 2 ;f(x,y,z) = x + y

7.13 П : коническая поверхность z = x + y ,

ограниченная плоскостями z = 0 , z = 1 ,

f(x,y,z) = x + y

7.14П : поверхность параболоида вращения

z = 1- x - y , ограниченная плоскостями z =0 ,

z =1 ;f(x,y,z) =

7.15П : часть поверхности конуса x + y = z ,

0 z 1 ;f(x,y,z)=