- •1. Цели и задачи дисциплины
- •2. Требования к уровню освоения содержания дисциплины
- •3.Трудоемкость дисциплины по видам занятий
- •4. Содержание дисциплины
- •4.1. Разделы дисциплины и виды занятий (в часах)
- •4.2. Содержание разделов
- •I семестр
- •Раздел 1. Элементы векторной алгебры и аналитической геометрии
- •Раздел 2. Введение в математический анализ: функция, теория пределов, непрерывность
- •Раздел 3. Дифференциальное исчисление функции одной переменной и его приложения
- •Раздел 4. Функции нескольких переменных
- •II семестр Раздел 5. Элементы теории функции комплексного переменного и высшей алгебры
- •Раздел 6. Неопределенный интеграл
- •Раздел 7. Определенный интеграл
- •Раздел 8. Кратные, криволинейные, поверхностные интегралы
- •III семестр
- •Раздел 9. Элементы теории поля
- •Раздел 10. Обыкновенные дифференциальные уравнения
- •5. Перечень практических занятий
- •I семестр
- •II семестр
- •III семестр
- •IV семестр
- •5 Самостоятельная работа студентов (срс)
- •6.Методические указания к самостоятельной работе студентов.
- •6.1.Линейная алгебра Определители и их вычисления
- •6.2.Аналитическая геометрия
- •Плоскость
- •Прямая в пространстве
- •Кривые второго порядка
- •6.3. Введение в математический анализ
- •Дифференциальные исчисления функций одной переменной
- •6.4. Дифференциальное исчисление функций нескольких переменных
- •6.5. Исследование функций на непрерывность
- •6.6. Неопределенные интегралы Многочлены. Теорема Безу
- •Неопределённый интеграл
- •Первообразная функция.
- •Свойства неопределённого интеграла.
- •Непосредственное интегрирование
- •Основные методы интегрирования
- •Основные методы интегрирования
- •Метод интегрирования по частям
- •Интегрирование некоторых функций, содержащих квадратный трехчлен
- •Универсальная подстановка
- •Вычисление интегралов вида
- •Интегрирование биноминального дифференциала.
- •Интегрирование рациональных дробей по методу Остроградского
- •6.7. Определенные интегралы Понятие определенного интнграла
- •Формула Ньютона-Лейбница
- •Вычисление площади Фигур
- •Площадь в полярных координатах
- •Вычисление объемов тел
- •Площадь поверхности вращения
- •Вычисление работы переменной силы
- •Вычисление центра тяжести плоской линии
- •Центр тяжести плоской фигуры
- •6.8. Криволинейные, кратные и поверхностные интегралы Объём цилиндрического тела. Двойные интегралы
- •Определение двойного интеграла
- •Теорема существования двойного интеграла
- •Свойства двойного интеграла
- •Теорема об оценке двойного интеграла
- •Замена переменных в двойном интеграле
- •Вычисление двойного интеграла в полярной системе координат
- •Тогда .
- •Решение
- •Поверхностные интегралы Определение поверхностного интеграла I рода
- •Поверхностные интегралы II рода
- •Вычисление поверхностного интеграла II рода
- •Формула Остроградского Связь между поверхностным интегралом и тройным интегралом
- •Связь поверхностного интеграла с криволинейным интегралом. Теорема Стокса
- •7.Контрольные работы
- •7.1.Контрольная работа №1
- •7.2.Контрольная работа №2
- •7.3. Контрольная работа №3
- •7.4.Контрольная работа №4
- •Задание 6. Вычислить криволинейный интеграл первого
- •Задание 8. Вычислить поверхностные интегралы второго рода
- •Задание 9 . Найти площадь поверхности
- •8. Учебно-методическое обеспечение дисциплины
- •9.Карта обеспеченности студентов учебниками, учебными пособиями, учебно-методическими материалами по дисциплине "Математика".
- •10. Перечень контрольных вопросов
- •Семестр II
- •Семестр III
- •Семестр IV
- •1.Цели и задачи дисциплины……………………….............1
Замена переменных в двойном интеграле
Пусть в области D существует .
Перейдём к новым переменным U иV по формулам
где G – область определений этих функций .
Формулы называются формулами преобразования координат .
(u,v из определяется единственным образом)
Пусть эти функции имеют непрерывные частные производные в области G .
Пример6.8.6.
,
где D – параллелограмм , ограниченный прямыми х + у = 1 , х + у =2 , 2х – у = 1 , 2х – у = 3 .
Решение Непосредственно вычисление затруднительно, т.к. область D надо разбить на 3 области.
Сделаем замену переменных :
x + y = u ,2x – y = v .
Рассмотрим систему координат uov :
-
Следовательно
,
.
Вычисление двойного интеграла в полярной системе координат
Во многих задачах , требующих применения двойных интегралов, прямоугольная система координат не является наилучшей.
Поэтому следует уметь переходить от одной системы координат к другой , более удобной , например , полярной .
Если 1) подынтегральная
функция или 2) уравнение границы области
интегрирования В содержит сумму
, то в большинстве случаев упрощение
интеграла достигается преобразованием
его к полярным координатам , т.к. в
полярных координатахх.
.
Рассмотрим , как двойной интеграл в прямоугольных координатах преобразовать в двойной интеграл в полярных координатах.
Пусть имеем двойной интеграл
,
где функция f(x,y) непрерывна в замкнутой области D .
Будем считать , что область D такова , что любая прямая , проходящая через начало координат , пересекает границу области более , чем в 2-х точках.
Преобразуем интеграл от прямоугольных координат к полярным координатам и .
При выводе формулы преобразования мы воспользуемся , хотя и не вполне строгим ,но простым и наглядным геометрическим методом рассуждений .
Отнесём область D к полярным координатам , приняв ось ОХ за полярную ось , а начало координат за полюс .
В этом случае , как легко установить , прямоугольные координаты точки связаны с полярными координатами следующим соотношениями :
Для того , чтобы получить все точки плоскости ОХУ , достаточно , очевидно, ограничиться знчениями 0 и 0 2.
По определению двойной интеграл
.
Поскольку этот предел не зависит от способа разбиения области D на частичные области , то мы можем разбить область D по своему усмотрению.
Рассмотрим такое дробление области D , чтобы легче было осуществить преобразование двойного интеграла к полярным координатам .
Разобъём область D на частичные области с помощью 1) концентрических окружностей с центром в полюсе и 2) лучей , исходящих из полюса О.
Пусть этому разбиению области D отвечает интегральная сумма
( Площади частичных областей Di( i =1,2, . . . , n) обозначим через Si ).
Частичная область Di представляет собой криволинейную фигуру, ограниченную двумя дугами концентрических окружностей радиусов i и i+1 и двумя отрезками лучей .
.
Обозначим
(
Средний радиус между i
и i+
i).
