
- •1. Цели и задачи дисциплины
- •2. Требования к уровню освоения содержания дисциплины
- •3.Трудоемкость дисциплины по видам занятий
- •4. Содержание дисциплины
- •4.1. Разделы дисциплины и виды занятий (в часах)
- •4.2. Содержание разделов
- •I семестр
- •Раздел 1. Элементы векторной алгебры и аналитической геометрии
- •Раздел 2. Введение в математический анализ: функция, теория пределов, непрерывность
- •Раздел 3. Дифференциальное исчисление функции одной переменной и его приложения
- •Раздел 4. Функции нескольких переменных
- •II семестр Раздел 5. Элементы теории функции комплексного переменного и высшей алгебры
- •Раздел 6. Неопределенный интеграл
- •Раздел 7. Определенный интеграл
- •Раздел 8. Кратные, криволинейные, поверхностные интегралы
- •III семестр
- •Раздел 9. Элементы теории поля
- •Раздел 10. Обыкновенные дифференциальные уравнения
- •5. Перечень практических занятий
- •I семестр
- •II семестр
- •III семестр
- •IV семестр
- •5 Самостоятельная работа студентов (срс)
- •6.Методические указания к самостоятельной работе студентов.
- •6.1.Линейная алгебра Определители и их вычисления
- •6.2.Аналитическая геометрия
- •Плоскость
- •Прямая в пространстве
- •Кривые второго порядка
- •6.3. Введение в математический анализ
- •Дифференциальные исчисления функций одной переменной
- •6.4. Дифференциальное исчисление функций нескольких переменных
- •6.5. Исследование функций на непрерывность
- •6.6. Неопределенные интегралы Многочлены. Теорема Безу
- •Неопределённый интеграл
- •Первообразная функция.
- •Свойства неопределённого интеграла.
- •Непосредственное интегрирование
- •Основные методы интегрирования
- •Основные методы интегрирования
- •Метод интегрирования по частям
- •Интегрирование некоторых функций, содержащих квадратный трехчлен
- •Универсальная подстановка
- •Вычисление интегралов вида
- •Интегрирование биноминального дифференциала.
- •Интегрирование рациональных дробей по методу Остроградского
- •6.7. Определенные интегралы Понятие определенного интнграла
- •Формула Ньютона-Лейбница
- •Вычисление площади Фигур
- •Площадь в полярных координатах
- •Вычисление объемов тел
- •Площадь поверхности вращения
- •Вычисление работы переменной силы
- •Вычисление центра тяжести плоской линии
- •Центр тяжести плоской фигуры
- •6.8. Криволинейные, кратные и поверхностные интегралы Объём цилиндрического тела. Двойные интегралы
- •Определение двойного интеграла
- •Теорема существования двойного интеграла
- •Свойства двойного интеграла
- •Теорема об оценке двойного интеграла
- •Замена переменных в двойном интеграле
- •Вычисление двойного интеграла в полярной системе координат
- •Тогда .
- •Решение
- •Поверхностные интегралы Определение поверхностного интеграла I рода
- •Поверхностные интегралы II рода
- •Вычисление поверхностного интеграла II рода
- •Формула Остроградского Связь между поверхностным интегралом и тройным интегралом
- •Связь поверхностного интеграла с криволинейным интегралом. Теорема Стокса
- •7.Контрольные работы
- •7.1.Контрольная работа №1
- •7.2.Контрольная работа №2
- •7.3. Контрольная работа №3
- •7.4.Контрольная работа №4
- •Задание 6. Вычислить криволинейный интеграл первого
- •Задание 8. Вычислить поверхностные интегралы второго рода
- •Задание 9 . Найти площадь поверхности
- •8. Учебно-методическое обеспечение дисциплины
- •9.Карта обеспеченности студентов учебниками, учебными пособиями, учебно-методическими материалами по дисциплине "Математика".
- •10. Перечень контрольных вопросов
- •Семестр II
- •Семестр III
- •Семестр IV
- •1.Цели и задачи дисциплины……………………….............1
Определение двойного интеграла
Пусть дана функция z = f(x,y) , определённая и непрерывная в некоторой замкнутой области D , граница Г которой простая замкнутая линия ( такую замкнутую область называют простой областью ).
Разобьём область D на n частичных (элементарных) областей (простых ) Di ( i=1,2,... ,n) ( без общих внутренних точек ) с помощью некоторой сети кривых .
Площади этих областей обозначим соответственно через S1, S2, . . . , Sn .В пределах каждой частичной области Di выберем произвольным
образом по точке (i ;i) и составим сумму :
.
Всякую такую сумму называют интегральной суммой для функции f(x,y) соответственной области D .
Меняя сеть разбиения и способ выбора точек в частичных областях , мы можем составить бесконечно много интегральных сумм , различных между собой.
Будем теперь неограниченно увеличивать число n разбиений области D на частичные области Di , но так , чтобы все d(Di) взятых областей стремились к нулю при этом .
Может случится , что тогда интегральная сумма будет иметь предел , не зависящий ни от способа разбиения области D на частные области Di ; ни от способа выбора точек (i ; i) в этих областях.
Этот предел I записывают следующим образом :
.
(6.7.7)
Определение 1
Если при d(Di) 0 интегральная сумма имеет предел , то этот предел называется двойным интегралом от функции f(x,y) , взятым по области D , и обозначается
.
Функция f(x ,y) при этом называется интегрируемой в области D .
Следовательно , по определению
.
Символ dS называется элементом площади .
Возвращаясь к рассмотренной выше задаче , можно , исходя из приведённого определения , сказать , что в случае интегрируемости в D функции f(x,y) объём цилиндрического тела равен двойному интегралу от функции f(x,y) по области D :
.
(6.7.8)
Эта формула показывает , что двойной интеграл от неотрицательной непрерывной функции геометрически выражает собой объём цилиндрического тела .
Элемент площади dS = dxdy , т.е. равняется произведению дифференциалов независимых переменных .
Доказано , если разбивать область D прямыми , параллельными осям ОХ и ОУ , то частичными будут служить прямоугольники .
Площадь каждой частичной области S будет равна произведению ху.
Поэтому элемент площади dS = dxdy .
Таким образом является прямым обобщением понятия простого определения на случай функции двух переменных .
Теорема существования двойного интеграла
Теорема
Интегральная сумма , соответствующая 1) конечной области D и 2)непрерывной в этой области функции f(x,y) , стремится к пределу при d(Di)0. Этот предел не зависит 1) ни от способа разбиения области D , 2) ни от выбора точек (i ; i) в этих областях .
Теорему рассматриваем без доказательства .
Свойства двойного интеграла
Двойной интеграл обладает рядом простейших свойств , вполне аналогичных соответствующим свойствам простого интеграла .
Доказательство основных свойств двойного интеграла ( подобно доказательству свойств простого интеграла ) основано на его определении как предела интегральной суммы .
Двойной интеграл по области D от алгебраической суммы функций равен алгебраической сумме интегралов слагаемых по той же области .
Так для двух функций это свойство запишется следующим образом :
3.Если область D разбита на 2 области D1 и DII без общих внутренних точек , а функция f(x,y) непрерывна во всех точках области D , то :
4. Если f(x,y) и (x,y) – интегрируемые в области D функции , то из неравенства
f(x,y) (x,y) , ( x,y)D
следует неравенство
(другими словами , неравенство можно почленно интегрировать !!)
5 . Если функция f(x,y) интегрируема в области D , то и функция f(x,y) интегрируема в этой области и
f(x,y)dS.
-f(x,y) f(x,y)f(x,y) ,
получим
-
.
Доказано , если -а х а , то х а .