Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учебное пособие для заочников 1 курс.docx
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
2.97 Mб
Скачать

Площадь в полярных координатах

Пусть в полярной системе координат дана кривая, уравнение которой , где - непрерывная функция при . Требуется вычислить площадь криволинейного сектора, ограниченного радиусами – векторами ОА и ОВ (для которых соответственно

)

.

Если плоская фигура ограничена несколькими кривыми, уравнения которых заданы в полярных координатах, то вычисления площади такой фигуры стараются свести к вычислен ию алгебраической суммы площадей криволинейных секторов.

Следовательно, будем иметь

. (т.е. из площади криволинейного сектора, ограниченного , отнимаем площади криволинейных секторов, ограниченных линиями , )

Вычисление объемов тел

Вычисление объема тела по площади поперечногo сечения

Пусть дано тело произвольной формы, заключенное между плоскостями x=a и x=b. Кроме того, пусть известна площадь любого поперечного сечения (т.е. площадь сечения, образованного плоскостью перпендикулярной к оси ОХ - тела). Требуется вычислить объем этого тела.

, где S – площадь поперечного сечения.

Объем тела вращения

Пусть вокруг оси ОХ вращается криволинейная трапеция, ограниченная осью ОX, прямыми x=a и x=b и кривой , где - непрерывная, неотрицательная на отрезке [a; b] функция. Тогда эта криволинейная трапеция опишет тело, являющееся телом вращения.

Пример 6. 7.7.Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной двумя ветвями кривой и прямой х=1.

Решение:

искомый объем получается как разность двух объемов, получающихся при вращении вокруг оси ОХ двух криволинейных трапеций, ограниченных сверху соответственно кривыми и . Область определения функции

Вычисление длины дуги

Длина дуги в полярных координатах

Пусть на плоскости XOY дана кривая, уравнение которой y=f(x), где f(x) – непрерывная на отрезке [a, b] функция.

Пусть производная этой функции также непрерывная функция на отрезке [a,b].

.

Пример 6.7.7..Вычислить длину дуги кривой между точками пересечения ее с осью ОХ.

Решение:

у=0, , .

Т.к. ув четной степени, то кривая симметрична относительно оси ОХ.

ОДЗ: .

,

:

Длина дуги кривой, заданной параметрическими уравнениями , , где

Пусть функции , - непрерывные на функции, с непрерывными производными ; , .

.

Пример 6.7.8. Вычислим длину траектории

, от до .

Решение:

;

Длина дуги в полярных координатах

Пусть в полярной системе координат дана кривая, уравнение которой , где . Функция имеет непрерывную производную на сегменте

.

Пример 6.7.9.Найти всю длину кривой .

Решение:

.

Здесь имеем при и при .

Площадь поверхности вращения

Требуется вычислить площадь поверхности, образованной вращением кривой y=f(x), где f(x) – непрерывная на функция, вокруг оси ОХ.

Пусть функция f(x) имеет непрерывную производную на отрезке .

Если дуга АВ задана параметрическими уравнениями, то

.

Пример 6.7.10.Определить площадь поверхности, образованной вращением вокруг оси ОХ дуги кривой , отсеченной прямой х=2.

Решение: , :