
- •Министерство образования и науки Российской Федерации Автономная некоммерческая образовательная организация высшего профессионального образования «тамбовский институт социальных технологий»
- •Учебно-методический комплекс дисциплины «Математические методы психологии» Автор: к.Пс.Н. Андреева а.А.
- •Раздел 1. Организационно-педагогическое описание учебного курса «Математические методы в психологии»
- •1.1. Назначение и цели дисциплины
- •1.2. Обязательный минимум содержание дисциплины
- •1.3. Структура дисциплины
- •1.4. Общие методические рекомендации по организации самостоятельной работы при изучении дисциплины
- •1.5. Требования к знаниям студентов и уровню их подготовки по завершению изучения дисциплины
- •1.6. Критерии оценки знаний студентов
- •Раздел 2. Тематическое содержание учебной дисциплины «Математические методы в психологии»
- •2.1. Рабочая учебная программа
- •Вопросы для подготовки к зачету по курсу
- •Раздел 3. Лекционный материал
- •3.1.Содержание лекционного материала (основной информационный блок) по темам программы учебного курса.
- •1. Первичное представление экспериментальных данных. Первичные описательные статистики.
- •2. Нормальный закон распределения. Проверка нормальности распределения.
- •Проверка гипотез с помощью статистических критериев. Содержательная интерпретация статистического решения.
- •Параметрические методы сравнения двух выборок. Сравнение дисперсий. Критерий t-Стьюдента для зависимых и независимых выборок.
- •1. Случай несвязных выборок
- •Выявление различий в уровне исследуемого признака. Оценка сдвига.
- •Выявление различий в распределении признака. Применение многофункциональных критериев к решению психологических задач.
- •Корреляция метрических переменных.
- •Применение непараметрических коэффициентов корреляции.
- •1. Математико-статистические идеи метода регрессионного анализа
- •2. Множественная линейная регрессия. Нелинейная регрессия.
- •1. Назначение, общие понятия и применение anova.
- •2. Однофакторный дисперсионный анализ anova.
- •1. Математико-статистические идеи и проблемы метода.
- •2. Использование факторного анализа в психологии
- •1. Многомерное шкалирование: назначение. Суть методов многомерного шкалирования (мш).
- •2. Меры различия.
- •3. Неметрическая модель.
- •Дискриминантный анализ: назначение.
- •Математико-статистические идеи метода. Исходные данные и результаты.
- •Кластерный анализ (ка) и система классификации исследованных объектов.
- •2. Методы кластерного анализа
- •Раздел 4. Самостоятельная работа
- •4.1. Задания для самостоятельной работы по темам
- •4.2. Примерная тематика контрольных работ и методические рекомендации по их написанию
- •Примерная тематика контрольных работ
- •Раздел 5. Литература
- •5.1. Основная литература
- •5.2. Дополнительная литература
- •Раздел 6. Тезаурус (определения основных понятий, категорий).
2. Нормальный закон распределения. Проверка нормальности распределения.
В психологических исследованиях нормальное распределение используется в первую очередь при разработке и применении тестов интеллекта и способностей. Так, отклонения показателей интеллекта IQ следуют закону нормального распределения, имея среднее значение равное 100 для любой конкретной возрастной группы и стандартное отклонение в подавляющем большинстве случаев равное 16.
Исходя из закона нормального распределения можно установить, насколько близко к крайним значениям распределения подходит то или иное значение IQ, а используя таблицы стандартного нормального распределения, можно вычислить, какая часть популяции имеет то или иное значение IQ.
Однако применительно к другим психологическим категориям, в первую очередь к таким, как личностная и мотивационная сферы, применение нормального распределения представляется весьма дискуссионным. Известно, что в реальных психологических экспериментах редко получаются данные, распределенные строго по нормальному закону. В большинстве случаев сырые психологические данные часто дают асимметричные, «ненормальные» распределения. Как подчеркивает Е.В. Сидоренко (3), причина этого заключается в самой специфике некоторых психологических признаков. Бывает, что от 10% до 20% испытуемых получают оценку «ноль», например, в методике Хекхаузена, когда в их рассказах не встречается ни одной словесной формулировки, которая отражала бы мотивы надежды на успех или боязни неудачи. Распределение таких оценок не может быть нормальным, как бы ни увеличивался объем выборки.
Еще раз подчеркнем, что важной особенностью нормального распределения является то, что форма и положение графика распределения определяется только двумя параметрами: средним значением (на рис. 1 обозначено (мю)) и стандартным отклонением (на рис.1 обозначено σ (сигма)). Если стандартное отклонение σ постоянно, а величина средней меняется, то собственно форма нормальной кривой остается неизменной, а лишь ее график смещается вправо (при увеличении ) или влево (при уменьшении ) по оси абсцисс — ОХ. При условии постоянства средней изменение сигмы влечет за собой изменение только ширины кривой: при уменьшении сигмы кривая делается более узкой, и поднимается при этом вверх, а при увеличении сигмы кривая расширяется, но опускается вниз. Однако во всех случаях нормальная кривая оказывается строго симметричной относительно средней, сохраняя правильную колоколообразную форму.
Выделим свойства кривой нормального распределения:
1) Плотность распределения той или иной величины f(х), отмечаемой на оси ОY, зависит от двух переменных: Хар и σ.
2) Кривая симметрична относительно прямой, перпендикулярной оси абсцисс и проходящей через точку .
3) Максимальное значение функции, которую она отражает, достигается при .
4) Имеет две точки перегиба, абсциссами которых являются значения = σ.
μ ±3σ
Рис. 1. Параметры μ и σ для нормального распределения
Для нормального распределения характерно также совпадение величин средней арифметической, моды и медианы. Равенство этих показателей указывает на нормальность данного распределения. Это распределение обладает еще одной важной особенностью: чем больше величина признака отклоняется от среднего значения, тем меньше будет частота встречаемости (вероятность) этого признака в распределении.
Если всю площадь под кривой принять за 100%, т.е. все возможные результаты измерений, то теперь можно предсказать, какой % от всей выборки будут составлять те или иные показатели (см.рис. 1)
Правило 3-х (трех сигм) проверки принадлежности к выборке крайних ее членов. Оно основано на том, что в интервале М3 располагается 99,7% всех вариант, образующих нормальное распределение. Значит, при допущении такого распределения и после соответствующих вычислений и можно отбросить варианты, меньшие, чем 3σ, и большие, чем +3σ, как чрезвычайно маловероятные.
Второй раздел. Методы статистического вывода: проверка гипотез.
Тема: «Применение параметрических методов в практике психологического исследования»