
- •Министерство образования и науки Российской Федерации Автономная некоммерческая образовательная организация высшего профессионального образования «тамбовский институт социальных технологий»
- •Учебно-методический комплекс дисциплины «Математические методы психологии» Автор: к.Пс.Н. Андреева а.А.
- •Раздел 1. Организационно-педагогическое описание учебного курса «Математические методы в психологии»
- •1.1. Назначение и цели дисциплины
- •1.2. Обязательный минимум содержание дисциплины
- •1.3. Структура дисциплины
- •1.4. Общие методические рекомендации по организации самостоятельной работы при изучении дисциплины
- •1.5. Требования к знаниям студентов и уровню их подготовки по завершению изучения дисциплины
- •1.6. Критерии оценки знаний студентов
- •Раздел 2. Тематическое содержание учебной дисциплины «Математические методы в психологии»
- •2.1. Рабочая учебная программа
- •Вопросы для подготовки к зачету по курсу
- •Раздел 3. Лекционный материал
- •3.1.Содержание лекционного материала (основной информационный блок) по темам программы учебного курса.
- •1. Первичное представление экспериментальных данных. Первичные описательные статистики.
- •2. Нормальный закон распределения. Проверка нормальности распределения.
- •Проверка гипотез с помощью статистических критериев. Содержательная интерпретация статистического решения.
- •Параметрические методы сравнения двух выборок. Сравнение дисперсий. Критерий t-Стьюдента для зависимых и независимых выборок.
- •1. Случай несвязных выборок
- •Выявление различий в уровне исследуемого признака. Оценка сдвига.
- •Выявление различий в распределении признака. Применение многофункциональных критериев к решению психологических задач.
- •Корреляция метрических переменных.
- •Применение непараметрических коэффициентов корреляции.
- •1. Математико-статистические идеи метода регрессионного анализа
- •2. Множественная линейная регрессия. Нелинейная регрессия.
- •1. Назначение, общие понятия и применение anova.
- •2. Однофакторный дисперсионный анализ anova.
- •1. Математико-статистические идеи и проблемы метода.
- •2. Использование факторного анализа в психологии
- •1. Многомерное шкалирование: назначение. Суть методов многомерного шкалирования (мш).
- •2. Меры различия.
- •3. Неметрическая модель.
- •Дискриминантный анализ: назначение.
- •Математико-статистические идеи метода. Исходные данные и результаты.
- •Кластерный анализ (ка) и система классификации исследованных объектов.
- •2. Методы кластерного анализа
- •Раздел 4. Самостоятельная работа
- •4.1. Задания для самостоятельной работы по темам
- •4.2. Примерная тематика контрольных работ и методические рекомендации по их написанию
- •Примерная тематика контрольных работ
- •Раздел 5. Литература
- •5.1. Основная литература
- •5.2. Дополнительная литература
- •Раздел 6. Тезаурус (определения основных понятий, категорий).
2. Использование факторного анализа в психологии
Использование факторного анализа в психологии. Факторный анализ широко используется в психологии в разных направлениях, связанных с решением как теоретических, так и практических проблем.
В теоретическом плане использование факторного анализа связано с разработкой так называемого факторно-аналитического подхода к изучению структуры личности, темперамента и способностей. Использование факторного анализа в этих сферах основано на широко принятом допущении, согласно которому наблюдаемые и доступные для прямого измерения показатели являются лишь косвенными и/или частными внешними проявлениями более общих характеристик. Эти характеристики, в отличие от первых, являются скрытыми, так называемыми латентными переменными, поскольку они представляют собой понятия или конструкты, которые не доступны для прямого измерения. Однако они могут быть установлены путем факторизации корреляционных связей между наблюдаемыми чертами и выделением факторов, которые (при условии хорошей структуры) можно интерпретировать как статистическое выражение искомой латентной переменной.
Хотя факторы имеют чисто математический характер, предполагается, что они репрезентируют скрытые переменные (теоретически постулируемые конструкты или понятия), поэтому названия факторов нередко отражают сущность изучаемого гипотетического конструкта. Так, факторный анализ, который был разработан в начале XX века Ч. Спирменом для исследования структуры способностей, позволил ввести в психологию понятие общего фактора способностей — фактора g. Впоследствии Л. Терстоун выдвинул и экспериментально апробировал модель, которая включала 12 факторов способностей. Факторно-аналитические исследования темперамента и личности в зарубежной психологии охватывают целый ряд теорий прошлого и настоящего, включая теории Г. Олпорта, Р. Кэттелла, Г. Айзенка и других.
В отечественной психологии факторный анализ наиболее широко использовался в дифференциальной психологии и психофизиологии при изучении свойств нервной системы человека в работах Б.М. Теплова и его школы. Теплов придавал большое значение этому виду статистической обработки данных, подчеркивая, что факторный анализ — ценное орудие в любой области, где можно хотя бы в виде предварительной гипотезы предположить наличие некоторых основных параметров, функций, свойств, образующих «структуру» данной области явлений.
В настоящее время факторный анализ широко используется в дифференциальной психологии и психодиагностике. С его помощью можно разрабатывать тесты, устанавливать структуру связей между отдельными психологическими характеристиками, измеряемыми набором тестов или заданиями теста.
Факторный анализ используется также для стандартизации тестовых методик, которая проводится на репрезентативной выборке испытуемых.
Тема: «Методы многомерного шкалирования»
1. Многомерное шкалирование: назначение. Суть методов многомерного шкалирования (мш).
Основная цель многомерного шкалирования (МШ) — выявление структуры исследуемого множества объектов — близка к цели факторного и кластерного анализа. Так же, как в факторном анализе, под структурой понимается набор основных факторов (в данном случае — шкал), по которым различаются и могут быть описаны эти объекты. Однако в отличие от факторного, но подобно кластерному анализу исходной информацией для МШ являются данные о различии или близости объектов.
В психологии чаще всего исходными данными для МШ являются субъективные суждения испытуемых о различии или сходстве стимулов (объектов). Центральное положение МШ заключается в том, что в основе таких суждений лежит ограниченное число субъективных признаков (критериев), определяющих различение стимулов, и человек, вынося свои суждения, явно или неявно учитывает эти критерии. Основываясь на этом положении, решается главная задана МШ— реконструкция психологического пространства, заданного небольшим числом измерений-шкал, и расположение в нем точек-стимулов таким образом, чтобы расстояния между ними наилучшим образом соответствовали исходным субъективным различиям. Таким образом, шкала в МШ интерпретируется как критерий, лежащий в основе различий стимулов.
Геометрические представления МШ основаны на аналогии между понятием различия в психологии и понятием расстояния в пространстве. Чем более субъективно сходны между собой два объекта, тем ближе в реконструируемом пространстве признаков должны находиться соответствующие этим объектам точки. Исходя из такой дистанционной модели, по субъективным данным о различии одного объекта от другого реконструируется их взаимное расположение в пространстве нескольких признаков. Эти признаки трактуются как субъективные шкалы — критерии, которыми пользуется человек при различении объектов. А расстояние между объектами в этом пространстве есть определенная функция от исходных оценок различия.
Общая схема МШ формально может быть представлена следующим образом. На основе суждений экспертов (испытуемых) в отношении интересующих исследователя объектов вначале составляется симметричная матрица попарных различий (или матрицы — по одной для каждого эксперта). Допускается и использование данных о предпочтениях, содержащих упорядочивание каждым экспертом совокупности объектов по степени их предпочтения. Сравниваемыми объектами могут быть члены коллектива, предметы домашнего обихода, литературные отрывки, цветовые оттенки и т. д. Модель МШ предполагает, что эксперт производит сравнение, осознанно или нет пользуясь одним или несколькими признаками этих объектов. В отношении сотрудников подразделения такими признаками могут быть должностной статус, профессионализм, доброжелательность и т. д.
В процессе МШ определяется, сколько признаков-шкал необходимо и достаточно для построения координатного пространства и размещения в нем точек-объектов.
Следует отметить, что исходными данными для МШ могут являться не только субъективные оценки различий, но и обычные данные типа «объект-признак». Но поскольку МШ предназначено для анализа различий, то для данных типа «объект-признак» необходимо, во-первых, определить, что будет подлежать шкалированию — сами объекты (строки) или признаки (столбцы). Во-вторых, необходимо задать метрику различии — то, как будут определяться различия между всеми парами изучаемых элементов.
Выбирая МШ, исследователь должен отдавать себе отчет в том, что это довольно сложный метод, применение которого к тому же связано с неизбежными потерями исходной информации о различии объектов. Поэтому, если задача исследования ограничивается классификацией объектов и нет оснований полагать, что эта классификация обусловлена небольшим числом независимых причин — критериев различий, то целесообразнее воспользоваться более простым методом — кластерным анализом.
МШ в своих основных трех модификациях позволяет решать три группы задач:
1. Исходные данные — прямые оценки субъектом различий между стимулами или вычисленные расстояния между объектами, характеризующимися совокупностью признаков. Примером второго типа данных могут являться расстояния между ролями (объектами), вычисленные по совокупности конструктов (репертуарные решетки Келли). МШ позволяет реконструировать психологическое пространство субъекта, как конфигурацию стимулов в осях существенных признаков, по которым эти стимулы различаются субъектом.
2. Исходные данные — те же, что и в предыдущем случае субъективные различия между стимулами (оцененные прямо или вычисленные), но полученные не от одного, а от группы субъектов. Взвешенная модель индивидуальных различий позволяет получить групповое психологическое пространство стимулов в осях общих для данной группы существенных признаков. Дополнительно к этому для каждого субъекта — индивидуальные веса признаков как меру учета соответствующих точек зрения при различении стимулов.
3. Исходные данные — результаты упорядочивания каждым из группы субъектов набора стимулов по степени предпочтения. Модель анализа предпочтений позволяет получить групповое психологическое пространство стимулов в осях существенных признаков и размещенные в этом же пространстве идеальные точки для каждого субъекта.