
- •Строение плазматической мембраны, роль ионных каналов, молекул-переносчиков, насосов, рецепторов. Виды транспорта веществ через мембрану клетки.
- •Виды транспотра:
- •2.Свойства живых и возбудимых систем: раздражимость, возбудимость, проводимость, лабильность, их количественные показатели. Сравнительная оценка возбудимости тканей.
- •3. Потенциал покоя и действия: их происхождение, фазы потенциала действия.
- •4.Фазовые изменения возбудимости в процессе развития возбуждения и их соотношение с фазами потенциала действия.
- •5. Классификация раздражителей. Законы раздражения: закон силы для одиночных клеток, закон силы для группы клеток, закон соотношения силы и времени, закон градиента.
- •6. Классификация нервных волокон, особенности проведения возбуждения по миелиновым и безмиелиновым волокнам. Законы проведения возбуждения по нервным волокнам.
- •7. Нервно-мышечный синапс. Формирование потенциала концевой пластинки. Отличия пкп от потенциала действия.
- •8. Режимы и типы сокращений скелетных мышц. Характеристика двигательных единиц.
- •9. Механизм мышечного сокращения. Теория скольжения.
- •10. Физиологические особенности гладких мышц.
- •11. Механизм передачи возбуждения в центральных синапсах, возбуждающие медиаторы, формирование впсп. Значение хеморегулируемых и потенциалзависимых ионных каналов.
- •12. Виды торможения в цнс. Тормозные медиаторы. Механизмы пре- и постсинаптического торможения
- •14. Понятие о сенсорных системах: структура и роль. Классификация рецепторов. Рецепторный и генераторный потенциалы. Кодирование сенсорной информации на уровне рецепторов.
- •15. Понятие о специфических и неспецифической сенсорных системах. Сенсорные функции ретикулярной формации и таламуса. Соматосенсорная кора, топографическое картирование, кортикальные колонки.
- •16. Светопреломляющие среды глаза. Рефракция, ее аномалии и коррекция. Понятие об остроте зрения. Механизмы аккомодации глаза.
- •17. Строение сетчатки, светочувствительный аппарат глаза, фоторецепторы и зрительные пигменты, фотохимические процессы при действии света. Трехкомпонентная теория цветного зрения.
- •18. Звукоулавливающий, звукопроводящий и рецепторный отдел слуховой системы. Анализ высоты и силы звука, адаптация органа слуха к звукам разной интенсивности.
- •19. Рефлексы спинного мозга (рефлексы регуляции длины и напряжения мышц, сгибательные и разгибательные рефлексы, ритмические рефлексы).
- •20. Рефлекторная регуляция мышечного тонуса. Статические и статокинетические рефлексы ствола мозга.
- •21. Базальные ганглии, характер взаимодействия между структурами базальных ганглиев и функционально связанными с ними отделами головного мозга. Причины и симптомы поражения базальных ганглиев.
- •22. Роль мозжечка в организации и координации движений. Взаимодействие коры и ядер мозжечка. Последствия повреждения мозжечка.
- •24. Медиаторы вегетативной нервной системы и их рецепция. Влияние отделов вегетативной нервной системы на функции внутренних органов.
- •26. Простые формы научения (привыкание и сенситизация). Механизмы формирования классических и оперантных условных рефлексов.
- •27. Механизмы кратковременной и долговременной памяти. Виды амнезий.
- •28. Сон: значение, теории сна, физиологические механизмы, стадии засыпания и фазы сна.
- •29. Критерии сознания у человека, варианты измененного сознания. Нейрофизиологические основы развития интеллекта и речи. Сенсомоторные центры речи.
- •30. Функциональная асимметрия мозга. Основные блоки структур мозга, ответственные за мышление. Типологические особенности личности.
- •31. Роль гипоталамуса в регуляции вегетативных, эндокринных функций, в поддержании гомеостаза, в формировании мотиваций и эмоций, в адаптивных реакциях организма.
- •32. Ретикулярная формация ствола мозга и таламус: их роль в организации сенсорных, двигательных, вегетативных функций цнс, в регуляции активности мозга.
- •34. Рецепция гормонов клетками, механизмы действия стероидных и нестероидных гормонов. Роль вторичных мессенджеров в передаче сигнала.
- •35. Гипоталамо-аденогипофизарная система. Освобождающие и тормозящие нейрогормоны гипоталамуса. Гормоны аденогипофиза, их роль в регуляции функций организма.
- •36. Гипоталамо-нейрогипофизарная система. Гормоны задней доли гипофиза. Механизм действия вазопрессина на клетки эпителия почечных канальцев.
- •37. Гормоны коры и мозгового слоя надпочечников: влияние на обмен веществ и физиологические функции организма. Регуляция продукции глюкокортикойдов и минералкортикойдов.
- •38. Горманы щитовидной железы: влияние на обмен веществ и функции организма. Регуляция образования йодсодержащих гормонов. Симптомы гипер- и гипофункции щитовидной железы.
- •39. Эндокринная функция поджелудочной железы. Значение гормонов поджелудочной железы в регуляции обмена веществ. Симптомы недостаточности эндокринной функции поджелудочной железы.
- •40. Гормональная регуляция обмена кальция в организме.
- •41. Симпатоадреналиновая реакция, стресс, реакции активации и тренировки. Естественные антистрессовые механизмы.
- •42. Кислотно-щелочное равновесие, его физиологические показатели. Механизмы компенсации нарушений кислотно-щелочного равновесия буферными системами крови.
- •43. Дыхательные и почечные механизмы поддержания кислотно-щелочного равновесия. Ацидозы и алкалозы
7. Нервно-мышечный синапс. Формирование потенциала концевой пластинки. Отличия пкп от потенциала действия.
Синапсы с химической передачей возбуждения обладают рядом общих свойств: возбуждение через синапсы проводится только в одном направлении, что обусловлено строением синапса (ме-
диатор выделяется только из пресинаптической мембраны и взаимодействует с рецепторами постсинаптической мембраны); передача возбуждения через синапсы осуществляется медленнее,
чем по нервному волокну (синаптическая задержка); синапсы обладают низкой лабильностью и высокой утомляемостью, а также высокой чувствительностью к химическим (в том числе и к фармакологическим) веществам; в синапсах происходит трансформация ритма возбуждения.
Возбуждение передается с помощью медиаторов (посредников), Медиаторы - это химические вещества, которые в зависимости от их природы делятся на следующие группы; моноамины (ацетилхолин, дофамин, норадреналин, серотонин), аминокислоты (гамма-аминомасляная кислота - ГАМК, глугаминовая кислота, глицин и др.) и нейропептиды (вещество Р, эндорфины, нейротензин, ангиотензин, вазопрессин, соматостатин и др.). Медиатор находится в пузырьках пресинаптического утолщения, куда он может поступать либо из центральной области нейрона с помощью аксонального транспорта либо за счет обратного захвата медиатора из синаптической щели. Он может также синтезироваться в синаптических терминалях из продуктов его расщепления.
К окончанию нервного волокна приходит потенциал действия (ПД); синаптические пузырьки высвобождают медиатор (ацетилхолин) в сипаптическую щель; ацетилхолин (АХ) связывается с рецепторами постсинаптической мембраны; потенциал постсинаптической мембраны снижается
от минус 85 до минус 10 мВ (возникает ВПСП). Под действием тока, идущего от деполяризованного участка к недеполяризованиым, возникает потенциал действия на мембране мышечного волокна.
ВПСП-возбуждающий постсинаптический потенциал.
8. Режимы и типы сокращений скелетных мышц. Характеристика двигательных единиц.
Сократимость — это специфическая деятельность мышечной ткани при ее возбуждении.
Сила мышцы определяется максимальным грузом, который мышца может поднять. Мышцы способны совершать работу. Работа мышц определяется произведением величины поднятого
груза на высоту подъема. Максимальная работа производится при средних величинах нагрузок. Лабильность мышцы равна 200-300 Гц.
При непосредственном раздражении мышцы (прямое раздражение) или опосредованно через иннервирующий ее двигательный нерв (непрямое раздражение) одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют три фазы: латентный период ~ время от начала действия раздражителя до начала ответной реакции; фазу сокращения (фаза укоро-
чения) и фазу расслабления.
В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, называется тетаиическим сокращением, или тетанусом, различают два вида тетануса: зубчатый и гладкий.
Если каждый последующий стимул поступает к мышце, в тот период когда онанаходится в фазе укорочения, то возникае гладкий тетанус, а если в фазу расслабления-зубчатый. Амплитуда тетатонического сокращения превышает амплитуду одиночного мышечного сокращения.
Различают несколько видов мышечных сокращений: изотонический, изометрический и смешанный. При изотоническом сокращении мышцы происходит изменение ее длины, а напряже-
ние остается постоянным. Такое сокращение происходит в том случае, если отсутствует сопротивление изменению ее длины. К изотоническому типу сокращений относятся сокращения мышц языка. При изометрическом сокращении длина мышечных волокон остается постоянной, а их напряжение возрастает. Такое сокращение мышцы возникает при попытке поднять чрезмерно большой груз. В естественных условиях сокращения мышц никогда не бывают чисто изотоническими или изометрическими, они имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы.
Характеристика двигальных единиц. Двигательная единица представляет собой систему из мотонейрона и иннервируемых им мышечных волокон ( 21). Двигательная единица работает как одно целое. Все мышечные волокна, входящие в состав данной двигательной единицы, сокращаются практически одновременно. Мотонейроны бывают большие и малые. Малые мотонейроны имеют тонкие аксоны и иннервируют небольшое количество (десятки) мышечных волокон, образуя малые двигательные единицы. Большие мотонейроны имеют толстые аксоны, которые иннервируют большое количество мышечных волокон (до нескольких тысяч), образуя большие двигательные единицы. Малые двигательные единицы входят в состав главным образом мелких мышц (пальцев рук, лица и др.), однако они входят также и в состав крупных мышц. Малые двигательные единицы обеспечивают быстрые и тонкие движения (например, движения пальцев рук). Большие двигательные единицы входят в состав преимущественно крупных мышц туловища и конечностей. Эти мышцы осуществляют относительно менее тонкие и более медленные движения, чем, например, движения пальцев рук. Малые мотонейроны (низкопороговые) возбуждаются легче и быстрее по сравнению с большими (высокопороговыми). Большинство скелетных мышц человека состоит как из медленных, так и из быстрых мышечных волокон. Поэтому волокна одной и той же мышцы могут выполнять относительно и более быстрые, и менее быстрые движения. Это зависит от того, какие двигательные единицы (быстрые или медленные) будут включены в работу. Мышцы бывают быстрые и медленные. Так, например, внутренняя прямая мышца глаза относится к быстрым, а камбаловидная к медленным мышцам. Длительность волны сокращения первой равна 7,5 мс, а второй 75 мс, т. е. в 10 раз больше.