Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория игр1.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
744.51 Кб
Скачать

4. Биматричные игры

В случае, когда интересы игроков различны, получаются две платежные матрицы: одна – матрица выплат игроку А, другая – матрица выплат игроку В. такие игры называются биматричными.

В общем случае биматричная игра – это игра с ненулевой суммой.

4.1. Примеры биматричных игр

Примеры этого раздела описывают некоторые типические конфликтные ситуации, приводящие к биматричным играм. Сначала мы обсудим вопросы, связанные с формализацией рассматриваемых конфликтов (построение платежных матриц), а позднее с рекомендациями по их разрешению.

Борьба за рынки

Небольшая фирма (игрок А) намерена сбыть партию товара на одном из двух рынков, контролируемых другой, более крупной фирмой (игрок В). Для этого фирма А готова сделать на одном из рынков соответствующие приготовления (например, развернуть рекламную кампанию). Господствующая на рынках фирма В может попытаться воспрепятствовать этому, приняв на одном из рынков предупредительные меры (разумеется, в рамках закона). Не встречая противодействия на рынке, фирма А захватывает его; при наличии препятствий – терпит поражение.

Будем считать для определенности, что проникновение фирмы А на первый рынок более выгодно для нее, нежели на второй. Естественно также считать, что и борьба за первый рынок потребует вложения больших средств. Например, победа фирмы А на первом рынке принесет ей вдвое больший выигрыш, чем победа на втором, но зато и поражение при попытке освоиться на первом рынке пол­ностью ее разорит, а фирму В избавит от конкурента.

Что же касается второго рынка, то при поражении фирмы А ее потери будут не столь разорительны, но и победа принесет не много. Таким образом, у фирмы А две стратегии:

A1 – выбор первого рынка, А2 – выбор второго рынка.

Такие же стратегии и у фирмы В:

В1 – выбор первого рынка, В2 – выбор второго рынка.

Для того чтобы составить платежные матрицы игроков, нужны расчетные количественные показатели, которые мы приведем здесь в условных единицах:

А= , В= .

Посмотрим на выписанные матрицы выплат. Из сказанного выше ясно, что если оба игрока выберут один и тот же рынок, то победа останется за более сильной фирмой В.

То, что в ситуации (A1, B1) выигрыш игрока В равен 5, а в ситуации (А22) – 1, подчеркивает, что первый рынок более выго­ден (удобно расположен, хорошо посещаем и т. п.), чем второй. Вы­игрыш (–10) игрока А в ситуации (A11) (а точнее, проигрыш) в сопоставлении с его выигрышем (–1) в ситуации (А22) выглядит, разумеется, вполне сокрушительно. Что же касается ситуации, ко­гда фирмы уделяют основное внимание разным рынкам – (A1,B2) и (А2, B1), то здесь фирму А ждет настоящий выигрыш, больший на более выгодном рынке. Потери, которые при этом несет фирма В, оказываются прямо противоположными.

Дилемма узников

Игроками являются два узника, находящиеся в предварительном заключении по подозрению в совершении преступления. При отсутст­вии прямых улик возможность их осуждения в большой степени за­висит от того, заговорят они или будут молчать.

Если оба будут молчать, то наказанием будет лишь срок предва­рительного заключения (потери каждого из узников составят (–1)). Если сознаются, то получат срок, учитывающий признание как смягчающее обстоятельство (потери каждого из узников составят в этом случае (– 6)). Если же заговорит только один из узников, а другой будет молчать. то в этом случае заговоривший будет выпущен на свободу (его потери равны 0), а сохраняющий молчание получит максимально возможное наказание (его потери будут равны (– 9)).

Эта конфликтная ситуация приводит к биматричной игре, в которой каждый из игроков имеет по две стратегии – молчать (М) или говорить (Г).

Выигрыши игроков А и В соответственно описываются так;

(М)

(Г)

(М) (Г)

–1

0

–9 –6

(М)

(Г)

(М) (Г)

–1

–9

0

–6

Семейный спор

Два партнера договариваются о совместном проведении одного из двух действий, (1) и (2), каждое из которых требует их совместного участия.

В случае осуществления первого из этих двух действий выигрыш первого партнера (игрок А) будет вдвое выше выигрыша второго партнера (игрок В). Напротив, в случае осуществления второго из этих двух действий выигрыш игрока А будет вдвое меньше выигрыша игрока В. Если же партнеры выполнят различные действия, то выигрыш каждого из них будет равен нулю.

(1)

(2)

(1)

(2)

2

0

0

1

(1)

(2)

(1)

(2)

1

0

0

2

Эта конфликтная ситуация приводит к биматричной игре, в которой каждый из игроков имеет по две стратегии. Выигрыши игроков А и В описываются таблицами следующего вида:

Пояснение. Понятно, что различные конфликтные ситуации могут иметь одну и ту же формализацию. В частности, рассмотренная биматричная игра часто интерпретируется как одновременный выбор супругами совместного развлечения: посещение оперного спектакля или хоккейного матча. При этом в посещении оперного театра жена заинтересована в большей степени, чем муж, а при посещении стадиона наблюдается обратная картина. В случае же непреодолимости разногласий, возникших при выборе, день оказывается вообще испорченным. Отсюда и название, вынесенное в заголовок.

Студент - преподаватель

Рассмотрим следующую ситуацию. Студент (игрок А) готовится к зачету, который принимает преподаватель (игрок В). Можно счи­тать, что у студента две стратегии – подготовиться к сдаче зачета (+) и не подготовиться (–). У преподавателя также две стратегии — поставить зачет [+] и не поставить зачета [–]. В основу значений функций выигрыша игроков положим следующие соображения:

Выигрыш студента Выигрыш преподавателя

(+)

[+] Оценка

заслужена

[–]

Очень

обидно

(+)

[+]

Все

нормально

[–]

Был неправ

(–)

Удалось обмануть

Оценка заслужена

(–)

Дал себя обмануть

Опять

придет

Количественно это можно выразить, например, так

[+] [–]

[+] [–]

(+)

(–)

2 –1 (+) 1 0 (–)

1 –3

–2 –1