
- •1.Электрические заряды. Закон сохранения зарядов. Закон кулона.Электрическая постоянная
- •2.Электростатическое поле. Напряженность поля. Поле точеного заряда и системы зарядов. Приницп суперпозиции.
- •3.Элекктрическое поле диполя. Применение Применение принципа суперпозиции для расчета полей.
- •4.Графическое изображения электростатичеких полей. Направление вектора напряженности.
- •5.Теорема Остроградского-Гаусса для электростатического поля.
- •6.Применение теоремы Гаусса для расчета полей.
- •7.Работа сил электростатического поля при перемещении зарядов. Циркуляция вектора напряженности.
- •8.Потенциал и разность потенциалов точек электростатического поля. Потенциалы полей точечного заряда и системы зарядов.
- •9.Эквипотенциальные поверхности и их свойства. Связь напряженности электрического поля с его потенциалом.
- •10.Элекктроемкость проводников. Конденсаторы. Вывод форумулы емкости плоского конденсатора.Виды конденсаторов.
- •11.Энергия системы зарядов и заряженного проводника.
- •12.Энергия заряженного конденсатора. Энергия и плотность энергии электростатического поля.
- •13.Диэлектрики в электрическом поле. Поляризация диэлектрика. Вектор поляризации и его связь с напряженностью поля.
- •14.Напряженность диэлектрического поля в диэлектрике. Относительная диэлектрическая проницаемость и ее связь с диэлектрической восприимчивостью.
- •15.Электростатическое поле на границе двух диэлектриков. Вектор электростатической индукции. Теорема Гаусса для электростатической индукции.
- •§ 90. Условия на границе раздела двух диэлектрических сред
- •16.Электрическое поле заряженных проводников. Напряженность поля у поверхности заряженного проводника.
- •17.Электрический ток. Условия его существования. Сила и плотность тока. Единицы силы тока в системе си.
- •18.Закон для участка цепи. Электрическое сопротивление проводников и его зависимость от температуры. Сверхпроводимость.
- •19.Работа и мощность тока. Закон Джоуля-Ленца. Тепловое действие тока и его применение.
- •20.Вывод законов Ома и Джоуля-Ленца в дифференциальной форме.
- •21. Правила Киргхофа и их применение для расчета разветвленных электрических цепей.
- •22.Закон Ома для замкнутой цепи. Э.Д.С. Источника тока. Режим работы источника.
- •23.Основные положения и опытное обоснование классической электронной теории электропроводности металлов.
- •24.Вывод закона Ома по электронной теории.
- •25. Вывод закона Джоуля – Ленца по электронной теории.
- •26.Закон Видемана-Франца. Связь между электро и теплопроводностью металлов и ее объяснение электронной теорией.
- •27.Термоэлектронная эмиссия и ее применение.
- •28.Термоэлектрические явления и их применение.
- •29.Магнитное поле проводников с током. Индукция магнитного поля. Графическое изображение магнитных полей.
- •30. Действие магнитного поля на проводник с током. Закон Ампера. Единицы измерения магнитной индукции.
- •31.Магнитный поток. Работа перемещения проводника с током в магнитном поле.
- •32. Действие магнитного поля на контур с током. Магнитный момент контура с током.
- •33.Закон Био-Савара-Лапласса. Напряженность магнитного поля. Магнитная постоянная.
- •34. Применение закона Био-Савара-Лапласса для расчета магнитных полей.
- •35.Циркуляция вектора магнитной индукции. Закон полного тока и его
- •36.Явление электромагнитной индукции. Закон Фарадея и правило Ленца
- •§ 122. Явление электромагнитной индукции (опыты Фарадея)
- •§ 123. Закон Фарадея и его вывод из закона сохранения энергии
- •37. Магнитное поле движущейся заряженной частицы.
- •38. Движение заряженных частиц в магнитном поле. Сила Лоренца.
- •§114. Действие магнитного поля на движущийся заряд
- •§ 115. Движение заряженных частиц в магнитном поле
- •39. Электрический ток в витке, движущемся в однородном магнитном
- •40. Явления самоиндукции. Индуктивность.
- •41.Влияние индуктивности на величину тока в цепи.
- •42.Явление взаимной индукции. Взаимная индуктивность.
- •43.Энергия м плотность энергии магнитного поля.
- •46. Ток смещения. Плотность тока смещеня.
- •47.Электромагнитное поле. Уравнение Максвелла в интегральной форме.
- •48.Электромагнитные волны. Их энергия и скорость распространения. Виды электромагнитных волн.
6.Применение теоремы Гаусса для расчета полей.
Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотностью + (=dQ/dS—заряд, приходящийся на единицу поверхности). Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (cos=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания En совпадает с Е), т.е. равен 2ES. Заряд, заключенный внутри построенной цилиндрической поверхности, равен S. Согласно теореме Гаусса (81.2), 2ES = S/0, откуда
E=/(20). (82.1)
Из формулы (82.1) вытекает, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскости однородно.
Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 127). Пусть плоскости заряжены равномерно разноименными зарядами с поверхностными плотностями + и -. Поле таких плоскостей найдем как суперпозицию полей, создаваемых каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние — от отрицательной плоскости. Слева и справа от плоскостей поля вычитаются (линии напряженности направлены навстречу друг другу), поэтому здесь напряженность поля E=0. В области между плоскостями E=E++E- (E+ и E-определяются по формуле (82.1)), поэтому результирующая напряженность
E=/0. (82.2)
Таким образом, результирующая напряженность поля в области между плоскостями описывается формулой (82.2), а вне объема, ограниченного плоскостями, равна нулю.
Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +0. Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией.
Поэтому линии напряженности направлены радиально Построим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R, то внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса (81.2), 4r2E=Q/0, откуда
При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости E от r приведен на рис. 129. Если r'<R, то замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).
Поле объемно заряженного шара. Шар
радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью (=dQ/dV— заряд, приходящийся на единицу объема). Учитывая соображения симметрии (см.п.3), можно показать, что для напряженности поля вне шара получится тот же результат, что и в предыдущем случае (см. (82.3)). Внутри же шара напряженность поля будет другая. Сфера радиуса r'<R охватывает заряд Q'=4/3r'3. Поэтому, согласно теореме Гаусса (81.2), 4r'2E=Q'/0=4/3r3/0. Учитывая, что =Q/(4/3R3), получим
Таким образом, напряженность ноля вне равномерно заряженного шара описывается формулой (82.3), а внутри его изменяется линейно с расстоянием r' согласно выражению (82.4). График зависимости E от r приведен на рис. 130.
Поле равномерно заряженного бесконечного цилиндра (нити). Бесконечный цилиндр
радиуса R (рис. 131) заряжен равномерно с линейной плотностью (=dQ/dt — заряд, приходящийся на единицу длины). Из соображений симметрии следует, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. В качестве замкнутой поверхности мысленно построим коаксиальный с заряженным цилиндр радиуса r и высотой l. Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы параллельны линиям напряженности), а сквозь боковую поверхность -2rlЕ. По теореме Гаусса (81.2), при r>R 2rlE = l/0, откуда
Если r<R, то замкнутая поверхность зарядов внутри не содержит, поэтому в этой области E=0. Таким образом, напряженность поля вне равномерно заряженного бесконечного цилиндра определяется выражением (82.5), внутри же его поле отсутствует.