Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Схемотехника-УчебнПособие для БИС.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
2.69 Mб
Скачать

3.2 Логические интегральные схемы

3.2.1Основные параметры логических интегральных микросхем

  1. входное U1вх и выходное U1вых напряжения логической единицы – значение высокого уровня напряжения на входе и выходе микросхемы;

  2. входное U0вх и выходное U0вых напряжение логического нуля – значение низкого уровня напряжения на входе и выходе микросхемы;

  3. входной I1вх и выходной I1вых токи логической единицы, входной I0вх и выходной I0вых токи логического нуля;

  4. логический перепад сигнала ;

  5. пороговое напряжение Uпор вх – напряжение на входе, при котором состояние микросхемы изменяется на противоположное;

  1. входное сопротивление логической ИМС – отношение приращения входного напряжения к приращению входного тока (различают R0вх и R1вх), выходное сопротивление – отношение приращения выходного напряжения к приращения выходного тока (различают R0вых и R1вых);

  2. статическая помехоустойчивость – максимально допустимое напряжение статической помехи по высокому U1пом и низкому U0пом уровням входного напряжения, при котором еще не происходят изменения уровня выходного напряжения микросхемы;

и) средняя потребляемая мощность Pпотр ср = (P0потр + Р1потр)/2 , где P0потр и Р1потр – мощности, потребляемые микросхемой в состоянии соответственно логического нуля и единицы на выходе;

  1. коэффициент объединения по входу Коб, показывающий, какое число аналогичных логических ИМС можно подключить к входу данной схемы, и определяющий максимальное число входов логической ИМС;

  2. коэффициент разветвления по выходу Кразв, показывающий какое количество аналогичных нагрузочных микросхем можно подключить к выходу данной ИМС, и характеризующий нагрузочную способность логической ИМС.

Цифровые интегральные схемы предназначены для обработки, преобразования и хранения цифровой информации. Они выпускаются сериями. Внутри каждой серии имеются объединенные по функциональному признаку группы устройств: логические элементы, триггеры, регистры, счетчики, дешифраторы, шифраторы, мультиплексоры, демультиплексоры и т.д. Чем шире функциональный состав серии, тем большими возможностями может обладать цифровое устройство, выполненное на базе микросхем данной серии. Микросхемы, входящие в состав каждой серии, имеют единое конструктивно-технологическое исполнение, одинаковое напряжение питания и одинаковые уровни сигналов логического нуля и логической единицы. Все это делает микросхемы одной серии совместимыми.

Основой каждой серии цифровых микросхем является базовый логический элемент. Как правило, базовые логические элементы выполняют операции И—НЕ, либо ИЛИ—НЕ и по принципу построения делятся на следующие основные типы: элементы резистивно-транзисторной логики (РТЛ), диодно-транзисторной логики (ДТЛ), транзисторно-транзисторной логики (ТТЛ), эмиттерно-связанной логики (ЭСЛ), интегрально-инжекционной логики (ИИЛ), базовые элементы которых выполнены на биполярных транзисторах. Микросхемы на комплементарных МДП-структурах (КМДП) используют пары МДП-транзисторов со структурой металл - диэлектрик – полупроводник с каналами р- и n-типов.