
- •Схемотехника
- •Содержание
- •1. Общие сведения об электронных приборах
- •1.1 Полупроводниковые приборы.
- •1.2 Контакты металл-полупроводник
- •1.3 Полупроводниковые диоды.
- •1.4 Биполярные транзисторы.
- •1.5 Усиление с помощью транзистора
- •2 Схемотехника аналоговых устройств
- •2.1 Дифференциальный усилитель
- •2.1.1 Режимы работы дифференциального усилителя
- •2.1.2 Дифференциальный усилитель с генератором стабильного тока
- •2.1.3 Разновидности схем дифференциальных усилителей
- •2.1.4 Дифференциальный усилитель с динамической нагрузкой
- •2.2 Выходные каскады усилителей
- •2.2.1 Простейшая двухтактная схема
- •2.2.2 Усилитель мощности с раздельным начальным смещением
- •2.3 Операционный усилитель
- •2.3.1 Назначение и основные параметры операционных усилителей
- •2.3.2 Двухкаскадный операционный усилитель
- •2.3.3 Внешние цепи
- •2.3.4 Инвертирующий усилитель
- •2.3.5 Неинвертирующий усилитель
- •3.2 Логические интегральные схемы
- •3.2.1Основные параметры логических интегральных микросхем
- •3.2.2 Схема дтл – диодно-транзисторной логики
- •3.2.3 Схемы ттл ‑ транзисторно-транзисторной логики
- •3.2.3.1 Схема ттл ‑ транзисторно-транзисторной логики с простым инвертором
- •3 .2.3.2 Схема ттл со сложным инвертором
- •3.2.4 Схемы эсл ‑ эмиттерно-связанной логики
- •3.2.4.1 Особенности схем эсл
- •3.2.4.2 Переключатель тока
- •3.2.4.3 Принцип действия базовой схемы эсл
- •3.2.5 Логические элементы на полевых транзисторах
- •3 .2.5.1 Логические элементы на мдп
- •3.3 Комбинационные логические схемы
- •3.3.1 Синтез комбинационной логической схемы
- •3.3.2 Дешифратор
- •3.3.2.2 Синтез матричного дешифратора
- •3.3.3 Шифратор
- •3.3.4 Мультиплексор
- •.3.5 Демультиплексор
- •3.4 Последовательностные логические схемы
- •3.4.1 Триггеры
- •3.4.2 Регистры
- •3.4.2.3 Регистры сдвига
- •3.4.3 Счетчики
- •3.5 Цифровые запоминающие устройства
- •4. Аналогово-цифровые и цифро-аналоговые преобразователи
- •4.1. Параллельные ацп
- •4.2. Последовательные ацп
- •4.3. Последовательно-параллельные ацп
- •4.4 Цифро-аналоговые преобразователи
- •Список литературы
- •Схемотехника
- •050013, Алматы, ул. Байтурсынова, 126
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ
КАЗАХСТАН
Некоммерческое акционерное общество
«Алматинский университет энергетики и связи»
А.Т.Ибраев, Т.М.Жолшараева
Схемотехника
Учебное пособие
Алматы 2012
УДК 621.3.049
ББК 32.844я73
И ___. Схемотехника
Учебное пособие / А.Т.Ибраев, Т.М.Жолшараева
АУЭС. Алматы, 2012.− 82 с.
ISBN
Рассмотрены основные сведения об электронных приборах, о работе аналоговых и цифровых электронных устройств, аналого-цифровых и цифро-аналоговых преобразователей. Приведены структурные и принципиальные схемы, временные диаграммы и описан принцип действия рассмотренных устройств.
Учебное пособие предназначено для студентов, обучающихся по специальности 5B070300 – Информационные системы.
Табл.13, Ил.102, библ. – 15 назв.
РЕЦЕНЗЕНТЫ: КазНТУ, докт. техн. наук, проф. Н.Исембергенов
АУЭС, докт. техн. наук, проф.Ш.А.Бахтаев
Печатается по плану издания Министерства образования и науки
Республики Казахстан на 2012 г.
ISBN
© НАО «Алматинский университет энергетики и связи», 2012 г.
Содержание
1.Общие сведения об электронных приборах 3
1.1 Полупроводниковые приборы 5
1.2 Контакты металл-полупроводник 7
1.3 Полупроводниковые диоды 8
1.4 Биполярные транзисторы 8
1.5 Усиление с помощью транзистора 13
1.6 Полевые транзисторы 14
2 Схемотехника аналоговых устройств 15
2.1 Дифференциальный усилитель 15
2.2 Выходные каскады усилителей 20
2.3 Операционный усилитель 22
3 Схемотехника цифровых устройств 28
3.1 Основные логические операции и логические элементы 29
3.2 Логические интегральные схемы 31
3.3 Комбинационные логические схемы 45
3.4 Последовательностные логические схемы 54
3.5 Цифровые запоминающие устройства 73
4. Аналогово-цифровые и цифро-аналоговые устройства 75
4.1 Параллельные АЦП 75
4.2 Последовательные АЦП 76
4.3. Последовательно-параллельные АЦП 77
4.4. Цифро-аналоговые преобразователи 78
Список литературы 81
1. Общие сведения об электронных приборах
Электронным прибором (ЭП) называют устройство, в котором в результате взаимодействия свободных или связанных носителей заряда с электрическим, магнитным и переменным электромагнитным полем обеспечивается преобразование информационного сигнала или преобразование вида энергии.
Основными признаками классификации разнообразных по принципу действия, назначению, технологии изготовления, свойствам и параметрам можно считать: вид преобразования сигнала; вид рабочей среды и тип носителей заряда; структуру (устройство) и число электродов; способ управления.
По виду преобразования сигнала все ЭП можно разбить на две группы. К первой группе относятся ЭП, в которых используется преобразование одного вида энергии в другой. В эту группу входят электросветовые ЭП (преобразование типа электрический сигнал в световой), фотоэлектронные приборы (световой сигнал в электрический), электромеханические (электрический сигнал в механический), механоэлектрические ЭП (механический сигнал в электрический), оптопары (электрический сигнал в световой и затем снова в электрический) и др.
Ко второй группе обычно относятся электропреобразовательные приборы, в которых изменяются параметры электрического сигнала (например, амплитуда, фаза, частота и др.).
По виду рабочей среды и типу носителей заряда различают следующие классы электронных приборов: электровакуумные, газоразрядные (разреженный газ, электроны и ионы), полупроводниковые (полупроводник, электроны и дырки), хемотронные (жидкость, ионы и электроны).
Электроды электронного прибора — это элементы его конструкции, которые служат для формирования рабочего пространства прибора и связи его с внешними цепями. Число электродов и их потенциалы определяют физические процессы в приборе.
Совокупность условий, определяющих состояние или работу электронного прибора, принято называть режимом электронного прибора, а любые величины, характеризующие этот режим (к примеру, ток или напряжение), — параметрами режима. Говорят об усилительных, импульсных, частотных, шумовых, температурных и механических свойствах, о надежности и т.п. Количественные сведения об этих свойствах называют параметрами прибора. К ним, например, относят коэффициенты передачи токов, характеристические частоты, коэффициент шума, интенсивность отказов, ударную стойкость и др.
Остановимся на понятиях статического и динамического режимов приборов. Статическим называют режим, когда прибор работает при постоянных («статических») напряжениях на электродах. В этом режиме токи в цепях электродов не изменяются во времени и распределения зарядов и токов в приборе также постоянны во времени. Однако, если хотя бы один из параметров режима, например, напряжение на каком-то электроде, изменяется во времени, режим называется динамическим. В динамическом режиме поведение прибора существенно зависит от скорости или частоты изменения воздействия (например, напряжения).
У большинства приборов эта зависимость объясняется инерционностью физических процессов в приборе, например, конечным временем пролета носителей заряда через рабочее пространство или конечным временем жизни носителей. Следовательно, связь мгновенных значений тока и напряжения в динамическом режиме должна отличаться от связи постоянных значений тока и напряжения в статическом режиме. Однако если время пролета значительно меньше периода изменения переменного напряжения, то это отличие во взаимосвязи будет несущественным, т.е. связь мгновенных значений будет практически такой же, как постоянных величин в статическом режиме. Указанная разновидность динамического режима называется квазистатическим режимом («квази» — означает «как бы» или «как будто»).
Обычно динамический режим получается в результате внешнего воздействия, например входного сигнала. Входной сигнал может быть синусоидальным или импульсным. Малым называют такой сигнал, при котором наблюдается линейная связь (прямая пропорциональность) между амплитудами выходного и входного сигналов.