
- •Билет №1
- •2. Периодические колебания угловой скорости входного звена: причины их возникновения и способы ограничения, коэффициент неравномерности хода.
- •Билет №2
- •Билет №3
- •Билет №4
- •2. Уравновешивание машин на фундаменте (пример).
- •Билет №5
- •2. Трение в кинематических парах механизма: основные понятия, виды трения, коэффициент трения скольжения.
- •Билет №6
- •2. Учет сил трения при расчете реакций в поступательных кинематических парах: угол трения, конус трения, приведенный коэффициент трения.
- •Билет №7
- •1. Классификация механизмов по конструктивному признаку.
- •Билет №8
- •2. Механический коэффициент полезного действия машины: общие понятия, кпд при последовательном и параллельном соединении механизмов.
- •Билет №9
- •1. Передаточные функции механизма: графический метод определения передаточных функций (аналоги скорости и ускорения).
- •2. Синтез рычажных механизмов: синтез шарнирного 4-х звенника методом замкнутости векторного контура.
- •Билет №10
- •Билет №11
- •1. Аналитический метод кинематического расчета механизмов.
- •2. Эвольвента, ее характеристики и свойства.
- •Билет №12
- •1. Динамический анализ рычажных механизмов. Цели и задачи.
- •2. Критерии синтеза механизмов и машин (Smax, θ, σ, γ, условие Грасгофа и др.).
- •Билет №13
- •1. Силы, действующие на звенья машины, их характеристики.
- •2. Методы нарезания эвольвентных зубчатых колёс, цели смещения исходного производящего контура инструмента.
- •Билет №14
- •1. Силовой расчет механизмов: основные допущения, принципы и порядок силового расчета.
- •2. Геометрические параметры эвольвентного зубчатого колеса.
- •1. Принцип Даламбера, силы и моменты сил инерции (пример их определения).
- •2. Процесс зацепления пары зубчатых колёс (ав, ав, mn, ym, cm).
- •3.3. Классификация сил. Внешние и внутренние силы. Статические и динамические нагрузки.
- •Билет №16
- •1. Динамика механизма: основные задачи динамики.
- •2. Качественные показатели работы зубчатых передач. Влияние смещения исходного производящего контура инструмента на качественные показатели работы зубчатого зацепления.
- •Билет №17
- •1. Замена механизма на эквивалентную расчетную схему: звено приведения, условия динамической эквивалентности механизма и звена приведения.
- •2. Передаточное отношение редукторов и его определение в рядовых и планетарных механизмах. Формула Виллиса для планетарного редуктора.
- •Билет №18
- •1. Уравнение движения механизма в энергетической (интегральной) форме.
- •2. Эвольвента, ее характеристики и свойства.
- •Билет №19
- •1. Уравнение движения механизма в дифференциальной форме.
- •2. Методы нарезания эвольвентных зубчатых колёс, цели смещения исходного производящего контура инструмента.
- •Билет №20
- •1. Классификация кинематических пар.
- •2. Определение угловой скорости входного звена механизма при разгоне по уравнению движения и с помощью диаграммы энергомасс.
- •2. Периодические колебания угловой скорости входного звена: причины их возникновения и способы ограничения, коэффициент неравномерности хода.
- •Билет №23
- •1. Классификация кинематических пар.
- •2. Определение угловой скорости входного звена механизма при установившемся режиме с помощью диаграммы энергомасс.
- •Билет №24
- •1. Замена высших кинематических пар низшими. Условия эквивалентности, соблюдаемые при замене, порядок замены.
- •2. Определение момента инерции маховика по заданному коэффициенту неравномерности хода при установившемся режиме работы механизма приближенным методом, методами Мерцалова и Виттенбауэра.
- •Билет №25
- •1. Силовой расчет механизмов: основные допущения и принципы силового расчета.
- •2. Процесс зацепления пары зубчатых колёс (ав, ав, mn, ym, cm). Билет №26
- •1. Структурный анализ механизмов. Цель и задачи структурного анализа. Определение степени свободы механизма.
- •2. Замена механизма на эквивалентную расчетную схему: звено приведения, условия динамической эквивалентности механизма и звена приведения.
- •Билет №27
- •1. Аналитический метод кинематического расчета механизмов.
- •2. Уравнение движения механизма в энергетической (интегральной) форме.
- •Билет №28
- •1. Уравнение движения механизма в дифференциальной форме.
- •2. Качественные показатели работы зубчатых передач. Влияние смещения исходного производящего контура инструмента на качественные показатели работы зубчатого зацепления.
- •Билет №29
- •1. Структурный синтез шарнирно-рычажных механизмов. Группы Ассура, их классификация. Формула строения механизма его класс и порядок.
- •2. Критерии синтеза механизмов и машин (Smax, θ, σ, γ, условие Грасгофа и др.). Билет №30
2. Критерии синтеза механизмов и машин (Smax, θ, σ, γ, условие Грасгофа и др.).
Теорема
Грасгофа: Наименьшее звено в четырёхзвенном
механизме будет являться кривошипом,
если сумма его длины и длины любого
другого звена меньше суммы длин оставшихся
звеньев. Если длины звеньев равны r,
R,
l,
L,
то
,
,
Билет №13
1. Силы, действующие на звенья машины, их характеристики.
Силы, возникающие при работе машинного агрегата, можно подразделить на 6 групп:
- Движущие силы РД.С. или их моменты МД.С.. Работа их за цикл всегда положительна.
- Силы РП.С. или моменты МП.С. технологического или полезного сопротивления. Выполнение машиной технологического процесса связано с преодолением сопротивлений, называемых полезными. Таковы, например, сопротивления при резании дерева в лесопильных машинах, дробления в дробильных машинах, сжатия воздуха или газа в компрессорах, резания в металлорежущих станках и др. Полезные сопротивления – это усилия, для преодоления которых и построен данный механизм или машина.
- Силы тяжести G, определяемые материалом и конструкцией звена. В ряде случаев вес звеньев механизма оказывает значительное влияние на нагрузку кинематических пар. Например, масса подвижной щеки дробилки достигает 2500 кг.
- Силы упругости Р или момент от сил упругости звеньев МР. Любое звено машины до известной степени деформируемо; потенциальная энергия, определяемая деформацией звена в момент накопления её (зарядки), берёт на себя часть работы движущих сил, и в следующий момент (разрядки) потенциальная энергия превращается в кинетическую, помогая движению отдельных звеньев машины. Деформациям под действием сил подвержены как жесткие звенья машины, так и упругие, например пружины.
- Силы «пассивных» сопротивлений Т или их моменты МТ. Это могут быть силы трения, силы сопротивления воздушной или жидкой среды. Трение в кинематических парах технологических машин является вредным, а в транспортных машинах и в тормозных системах ими пользуются как необходимыми силами.
- Силы инерции РИ и моменты от сил инерции МИ. Если звено механизма при своём движении имеет ускорение, то всегда возникают силы инерции или моменты от сил инерции, которые в быстроходных машинах достигают значительной величины и требуют учёта.
- Реакции связи.
Внешними силами являются: силы веса, сопротивления о среду.
Внутренними силами являются усилия, возникающие в связях.
2. Методы нарезания эвольвентных зубчатых колёс, цели смещения исходного производящего контура инструмента.
Существует 2 основных метода нарезания зубчатых колёс:
- Метод копирования, при котором режущие кромки инструмента соответствуют форме впадины зубчатого колеса. Модульная фреза, кольцевая, пальцевая, протяжка (этот метод применяется редко, так как имеет ряд недостатков, в частности не технологичен, требует содержание больших складских помещений).
- Более прогрессивным и технологичным является метод огибания, или метод обкатки. Он заключается в том, что в процессе изготовления режущи инструмент и заготовка получают точно такие же относительные движения, как в процессе зацепления, только режущий инструмент получает дополнительное движение – резание. Процесс идёт непрерывно. Эвольвентный профиль зуба образуется как огибающая ряда последовательных положений режущей кромки инструмента.
При методе огибания одним и тем же инструментом можно изготовить зубчатые колёса с разным числом зубьев. Можно производить исправления зубчатых колёс, то есть смещать инструмент в процессе изготовления. Инструмент- долбяк, зубчатая рейка (гребёнка), червячная фреза.
Линия станочного зацепления – траектория движения точки контактирования эвольвентных профилей инструмента и нарезаемого колеса.
Цели смещения исходного контура:
- Устранение подреза ножки зуба.
- Обеспечение заданного межосевого расстояния.
- Улучшение качественных показателей зацепления: повышение плавности, бесшумности работы механизма, повешение износостойкости профилей зубьев, повышение контактной прочности, повышение изгибной прочности.