
- •Электродинамика как раздел науки
- •Скалярные и векторные поля. Способы представления полей
- •Заряд, плотность заряда, плотность тока
- •Закон сохранения заряда
- •Векторы электромагнитного поля
- •Силовое воздействие электромагнитного поля
- •Потенциальное и вихревое поле
- •Электромагнитные свойства сред
- •Классификация сред
- •Тензоры диэлектрической и магнитной проницаемости
- •Закон полного тока (закон Ампера)
- •Закон электромагнитной индукции
- •Закон Гаусса
- •Уравнения Максвелла в интегральной форме
- •Уравнения Максвелла в дифференциальной форме
- •Координатная форма уравнений Максвелла
- •Физический смысл уравнений Максвелла
- •Электростатическое и магнитостатическое поля
- •Уравнения Максвелла для комплексной амплитуды
- •Комплексные диэлектрическая и магнитная проницаемости. Тангенс угла электрических потерь.
- •21. Теорема Пойнтинга
- •22. Уравнения Гельмгольца
- •Волновые процессы. Фазовый фронт. Плоская, сферическая, цилиндрическая волны
- •Плоская волна. Характеристическое сопротивление среды
- •Фазовая скорость и постоянная затухания плоских волн
- •Плоские волны в хорошо проводящих средах. Скин-слой
- •Дисперсия, групповая скорость
- •Линейная поляризация электромагнитных волн. Суперпозиция двух линейно поляризованных волн
- •Круговая поляризация электромагнитных волн.
- •Граничные условия для нормальных компонент векторов е и d
- •Граничные условия для тангенциальных компонент векторов е и d
- •Граничные условия для нормальных компонент векторов н и в
- •Граничные условия для тангенциальных компонент векторов н и в
- •− Поверхностный ток
- •Нормальное падение электромагнитной волны на идеально проводящую плоскость
- •Нормальное падение плоской электромагнитной волны на диэлектрическое полупространство
- •Падение плоской электромагнитной волны на диэлектрическое полупространство под произвольным углом. Законы Снеллиуса.
- •Угол Брюстера
- •Угол полного внутреннего отражения
- •Линии передачи, основные типы
- •Классификация направляемых волн. Волны типа те, тм, тем Падение плоской волны с параллельной поляризацией
- •Падение плоской волны с перпендикулярной поляризацией
- •Фазовая скорость направляемых волн
- •Типы волн в волноводах. Критическая длина волны
- •Волны типа е в прямоугольном волноводе
- •Волны типа н в прямоугольном волноводе
- •Основная волна н10 в прямоугольном волноводе
- •Критическая длина волны и длина волны в прямоугольном волноводе
- •Токи на стенках прямоугольного волновода с волной н10. Излучающие и неизлучающие щели
- •Волны типа тем. Коаксиальная линия передачи
- •Волны типа тем. Полосковые линии передачи
- •Линии поверхностной волны
- •Световоды
- •Квазиоптические линии передачи
- •Элементарный электрический излучатель. Составляющие электромагнитного поля
- •Элементарный электрический излучатель. Векторный электрический потенциал
- •Элементарный электрический излучатель. Диаграмма направленности
- •Элементарный магнитный излучатель.
- •Классификация радиоволн по диапазону частот. Особенности диапазонов. Области использования.
- •Строение и параметры атмосферы
- •Механизмы распространения радиоволн
- •Параметры антенн
- •Уравнение радиопередачи
- •Область, существенная для распространения радиоволн
- •Радиолинии с низкоподнятыми антеннами при плоской Земле
- •Радиолинии с низкоподнятыми антеннами при сферической Земле
- •Радиолинии с высокоподнятыми антеннами при гладкой плоской земле
- •Ионосфера. Ионосферные слои
- •Преломление и отражение радиоволн в ионосфере
- •Максимально применимая частота, критический угол
- •Поглощение радиоволн в ионосфере
- •Влияние магнитного поля Земли на распространение радиоволн в ионосфере
- •Тропосфера, индекс преломления
- •Рефракция радиоволн в тропосфере, виды рефракций
- •Отражение и рассеяние радиоволн на неоднородностях тропосферы
- •Особенности распространения длинных и средних волн
- •Особенности распространения коротких волн
- •Особенности распространения волн диапазона укв
Круговая поляризация электромагнитных волн.
Для получения случая линейной поляризации необходимо, чтобы составляющие вектора были синфазными или противофазными.
Рассмотрим
второй частный случай. Пусть амплитуды
составляющих
и
равны, а начальные фазы отличаются на
:
,
Тогда
,
Подставляя
эти значения в выражение для угла
,
получим:
,
откуда следует, что
,
Величина вектора при этом остается неизменной:
.
Таким
образом, в фиксированной точке пространства
вектор
,
оставаясь неизменным по величине,
вращается с угловой частотой
вокруг направления оси
.
Конец вектора при этом описывает
окружность. Волны такого типа называются
волнами с круговой поляризацией.
Граничные условия для нормальных компонент векторов е и d
Рассмотренный выше простейший вид электромагнитного волнового процесса − плоская волны − является весьма идеализированным, поскольку здесь предполагается бесконечная протяженность волновых фронтов. В любой практической задаче электромагнитное поле тем или иным способом ограничено в пространстве. Естественными границами могут быть, например, металлические стенки волновода или границы раздела между средами с различными параметрами. Если параметры сред на границе раздела изменяются скачкообразно, то в общем случае компоненты векторов электромагнитного поля также претерпевают разрыв в точках границы. Далее мы найдем связи между векторами поля на границе, которые удовлетворяли бы уравнениям Максвелла.
Математическая постановка данной задачи выглядит следующим образом. Предположим, что две среды с номерами 1 и 2 разделены поверхностью . Вблизи от границы раздела известно полное электромагнитное поле, относящееся к области 1. Требуется отыскать электромагнитное поле в такой же окрестности, принадлежащей области 2.
Среда
1 имеет параметры
,
,
,
среда 2 − соответственно
,
,
.
Поскольку на границе эти параметры
меняются скачкообразно, то надо ожидать,
что компоненты векторов поля при переходе
границ раздела сред также будут испытывать
разрывы. Тогда векторная линия будет
претерпевать излом.
Для упрощения решения поставленной задачи векторы электромагнитного поля, рассматриваемые на границе раздела сред, принято разлагать на тангенциальные (касательные) и нормальные составляющие.
Методика
вывода граничных условий и соответствующая
иллюстрация остаются здесь совершенно
аналогичными тем, что были использованы
при выводе условий для нормальных
составляющих магнитного поля. Однако
за основу принимается не четвертое
уравнение Максвелла
,
а третье
.
Отсюда возможны два случая.
Первый. Плотность поверхностных электрических зарядов равна нулю. Суммарный электрический заряд , заключенный внутри малой цилиндрической области, при этом равен нулю. В соответствии с теоремой Гаусса
,
откуда по аналогии с предыдущим выводом следует
.
Итак, при отсутствии поверхностных электрических зарядов нормальные составляющие векторов электрического смещения на границе раздела двух сред непрерывны, в то время как нормальные составляющие напряженностей электрического поля в общем случае претерпевают скачок:
.
Второй
случай. На границе раздела равномерно
распределен поверхностный электрический
заряд с плотностью
.
В
этом случае, очевидно, стремление к нулю
высоты цилиндра
не влияет на величину заряда, заключенного
внутри цилиндра. Воспользовавшись
законом Гаусса, можно записать формулу:
,
откуда следует
.
Это выражение означает, что при наличии заряженной границы раздела нормальные составляющие векторов электрической индукции испытывают скачок, по величине равный плотности поверхностного заряда в исследуемой точке. Физически это обусловлено тем, что заряд, расположенный на поверхности, создает свое собственное поле, ориентированное таким образом, что по одну сторону от границы раздела это поле складывается со внешним полем, а по другую вычитается.