
- •Электродинамика как раздел науки
- •Скалярные и векторные поля. Способы представления полей
- •Заряд, плотность заряда, плотность тока
- •Закон сохранения заряда
- •Векторы электромагнитного поля
- •Силовое воздействие электромагнитного поля
- •Потенциальное и вихревое поле
- •Электромагнитные свойства сред
- •Классификация сред
- •Тензоры диэлектрической и магнитной проницаемости
- •Закон полного тока (закон Ампера)
- •Закон электромагнитной индукции
- •Закон Гаусса
- •Уравнения Максвелла в интегральной форме
- •Уравнения Максвелла в дифференциальной форме
- •Координатная форма уравнений Максвелла
- •Физический смысл уравнений Максвелла
- •Электростатическое и магнитостатическое поля
- •Уравнения Максвелла для комплексной амплитуды
- •Комплексные диэлектрическая и магнитная проницаемости. Тангенс угла электрических потерь.
- •21. Теорема Пойнтинга
- •22. Уравнения Гельмгольца
- •Волновые процессы. Фазовый фронт. Плоская, сферическая, цилиндрическая волны
- •Плоская волна. Характеристическое сопротивление среды
- •Фазовая скорость и постоянная затухания плоских волн
- •Плоские волны в хорошо проводящих средах. Скин-слой
- •Дисперсия, групповая скорость
- •Линейная поляризация электромагнитных волн. Суперпозиция двух линейно поляризованных волн
- •Круговая поляризация электромагнитных волн.
- •Граничные условия для нормальных компонент векторов е и d
- •Граничные условия для тангенциальных компонент векторов е и d
- •Граничные условия для нормальных компонент векторов н и в
- •Граничные условия для тангенциальных компонент векторов н и в
- •− Поверхностный ток
- •Нормальное падение электромагнитной волны на идеально проводящую плоскость
- •Нормальное падение плоской электромагнитной волны на диэлектрическое полупространство
- •Падение плоской электромагнитной волны на диэлектрическое полупространство под произвольным углом. Законы Снеллиуса.
- •Угол Брюстера
- •Угол полного внутреннего отражения
- •Линии передачи, основные типы
- •Классификация направляемых волн. Волны типа те, тм, тем Падение плоской волны с параллельной поляризацией
- •Падение плоской волны с перпендикулярной поляризацией
- •Фазовая скорость направляемых волн
- •Типы волн в волноводах. Критическая длина волны
- •Волны типа е в прямоугольном волноводе
- •Волны типа н в прямоугольном волноводе
- •Основная волна н10 в прямоугольном волноводе
- •Критическая длина волны и длина волны в прямоугольном волноводе
- •Токи на стенках прямоугольного волновода с волной н10. Излучающие и неизлучающие щели
- •Волны типа тем. Коаксиальная линия передачи
- •Волны типа тем. Полосковые линии передачи
- •Линии поверхностной волны
- •Световоды
- •Квазиоптические линии передачи
- •Элементарный электрический излучатель. Составляющие электромагнитного поля
- •Элементарный электрический излучатель. Векторный электрический потенциал
- •Элементарный электрический излучатель. Диаграмма направленности
- •Элементарный магнитный излучатель.
- •Классификация радиоволн по диапазону частот. Особенности диапазонов. Области использования.
- •Строение и параметры атмосферы
- •Механизмы распространения радиоволн
- •Параметры антенн
- •Уравнение радиопередачи
- •Область, существенная для распространения радиоволн
- •Радиолинии с низкоподнятыми антеннами при плоской Земле
- •Радиолинии с низкоподнятыми антеннами при сферической Земле
- •Радиолинии с высокоподнятыми антеннами при гладкой плоской земле
- •Ионосфера. Ионосферные слои
- •Преломление и отражение радиоволн в ионосфере
- •Максимально применимая частота, критический угол
- •Поглощение радиоволн в ионосфере
- •Влияние магнитного поля Земли на распространение радиоволн в ионосфере
- •Тропосфера, индекс преломления
- •Рефракция радиоволн в тропосфере, виды рефракций
- •Отражение и рассеяние радиоволн на неоднородностях тропосферы
- •Особенности распространения длинных и средних волн
- •Особенности распространения коротких волн
- •Особенности распространения волн диапазона укв
Плоские волны в хорошо проводящих средах. Скин-слой
По определению с электродинамической точки зрения среда является хорошо проводящей, т.е. металлоподобной, если в каждой точке её плотность токов проводимости значительно превосходит плотность токов смещения. Чем ниже частота, тем ближе при прочих равных условиях приближается данная среда к идеальному металлу.
Скин-эффект (поверхностный эффект) — эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды.
Толщина скин-слоя: Объёмная плотность тока максимальна у поверхности проводника. При удалении от поверхности она убывает и на глубине ∆ становится меньше в е раз. Поэтому практически весь ток сосредоточен в слое толщиной ∆. Она называется толщиной скин-слоя и на основании полученного выше равна:
Дисперсия, групповая скорость
Зависимость
фазовой скорости волны от частоты
называют дисперсией:
.
Среда или направляющая система, в которой
наблюдается дисперсия, называется
дисперсной.
Для разных сред зависимость фазовой скорости от частоты различна. Различают нормальную дисперсию, когда фазовая скорость волны понижается с ростом частоты, и аномальную, когда фазовая скорость повышается с частотой.
Сигналы, несущие информацию, всегда представляются только модулированными колебаниями, импульсными или непрерывными. Изменение поля во времени, т.е., модуляция, служит средством передачи информации.
Любой модулированный сигнал представляет собой спектр частот с определенными амплитудными и фазовыми соотношениями между отдельными частотными составляющими. В дисперсной системе отдельные частотные составляющие распространяются с разными скоростями и испытывают различное затухание. Это нарушает амплитудно-фазовые соотношения в спектре сигнала, и на приемном конце его форма может сильно отличаться от исходной.
Скорость передачи узкополосного сигнала, например сигнала с амплитудной модуляцией, называется групповой скоростью. Во всех случаях, когда дисперсия еще не приводит к существенному искажению сигнала, групповая скорость рассматривается как скорость переноса сигнала.
Первый косинус характеризует огибающую биений, а второй − высокочастотное колебание
Групповую
скорость
определяют как скорость перемещения
максимума огибающей, соответствующего
максимуму плотности энергии
электромагнитного поля.
В среде без потерь групповая скорость равна фазовой скорости:
.
В зависимости от типа дисперсии групповая скорость может быть больше или меньше фазовой:
,
− отсутствие дисперсии
,
− нормальная дисперсия
,
− аномальная дисперсия
Линейная поляризация электромагнитных волн. Суперпозиция двух линейно поляризованных волн
Простейшим случаем является линейная поляризация. Если рассмотреть выражение для вектора :
,
то
окажется, что половину периода направление
вектора
совпадает с положительным направлением
оси
,
а вторую половину − противоположно ему
(см. рисунок). Таким образом, в фиксированной
точке пространства
конец вектора
с течением времени перемещается вдоль
отрезка прямой линии, а величина вектора
изменяется в интервале
.
Волны, имеющие такой характер ориентации
вектора
,
называются линейно поляризованными.
Плоскость, проходящую через направление
распространение волны и вектор
,
называют плоскостью поляризации. В
рассматриваемом примере плоскостью
поляризации является плоскость
.