
- •Введение
- •Электростатическое поле в вакууме
- •Электрический заряд и его свойства. Закон Кулона
- •Электростатическое поле
- •1.2.1.Напряжённость электрического поля
- •1.2.2. Принцип суперпозиции электрических полей
- •1.2.3. Линии напряжённости.
- •1.2.4. Поток вектора напряжённости электростатического поля
- •1.2.5. Теорема Остроградского-Гаусса для электрического поля
- •1.2.6. Алгоритм применения теоремы
- •1.2.7. Электрическое поле бесконечно длинного,
- •1.2.8. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.2.9. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •Потенциальная энергия, работа поля электрического поля, потенциал точек электростатического поля
- •1.3.1.Основные понятия
- •1.3.2. Работа сил электростатического поля.
- •1.3.3. Энергия электрического заряда в электрическом поле
- •1.3.4. Потенциал и разность потенциалов электрического поля
- •1.3.5. Связь напряженности электрического поля
- •1.3.6. Эквипотенциальные поверхности и их свойства
- •2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электрическое поле на границе проводник - вакуум
- •2.3.Электрическая ёмкость. Конденсаторы
- •2.3.1. Электроемкость уединенного проводника
- •2.3.2. Конденсаторы и их емкость.
- •2.3.3. Соединения конденсаторов
- •3. Магнитное поле в вакууме и его характеристики
- •3.1. Магнитное поле, вектор магнитной индукции
- •3.2. Гипотеза Ампера
- •3.3. Закон Био – Савара – Лапласа и алгоритм его применения
- •3.4. Применение закона Био-Савара-Лапласа к расчету магнитных полей прямолинейного и кругового токов
- •3.4.1. Магнитное поле прямолинейного бесконечно длинного
- •3.4.2. Магнитное поле на оси кругового проводника с током
- •3.5. Магнитное взаимодействие токов. Силы Лоренца и Ампера
- •3.6. Циркуляция индукции магнитного поля. Вихревой характер магнитного поля. Теорема о циркуляции индукции магнитного поля (закон полного тока для магнитного поля)
- •3.7. Применение закона полного тока для расчета магнитных полей
- •Напряженность магнитного поля тороида
- •3.7.3. Напряженность магнитного поля внутри
- •3.8. Магнитный поток
- •4. ЭлектроМагнитное поле в веществе
- •4.1. Электрическое поле в веществе
- •4.1.1. Электрический и магнитный диполи.
- •4.1.2. Механизмы поляризации диэлектриков
- •4.1.3. Связанные заряды в диэлектриках.
- •4.1.4. Электрическое поле в диэлектриках.
- •4.1.5. Условия на границе раздела двух диэлектриков
- •4.1.6. Сегнетоэлектрики и их свойства.
- •4.2.Магнитное поле в веществе
- •4.2.1. Магнетизм атомов и молекул
- •4.2.2. Магнитное поле в веществе. Намагниченность
- •4.2.3. Диамагнетики и их свойства
- •4.2.4. Парамагнетики и их свойства
- •4.2.5. Ферромагнетики и их свойства
- •4.2.6. Граничные условия на поверхности раздела
- •5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина (сила) тока, плотность тока. Сторонние силы
- •5.3. Законы Ома для участка цепи, полной цепи, в дифференциальной форме. Сопротивление. Явление сверхпроводимости
- •5.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6. Электроны в кристаллах
- •6.1. Уровень Ферми. Элементы зонной теории кристаллов. Квантовая теория электропроводности металлов.
- •6.2. Электропроводность полупроводников. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •6.2.1. Собственная проводимость полупроводников
- •6 .2.2. Примесные полупроводники
- •6.3 Электромагнитные явления на границе раздела сред
- •6.3.2.Эффект Пельтье
- •6.3.3. Эффект термопары (Явление Зеебека)
- •7.2. Явление самоиндукции. Коэффициенты индуктивности и взаимной индуктивности
- •7.3. Взаимная индукция.
- •7.4. Явление самоиндукции при замыкании и размыкании электрической цепи
- •7.5. Энергия магнитного поля.
1.3.4. Потенциал и разность потенциалов электрического поля
Так как потенциальная энергия системы электрических зарядов пропорциональна величинам зарядов, то, помещая в одну и ту же точку поля различные по величине заряды, будет изменяться потенциальная энергия.
Однако отношение потенциальной энергии системы зарядов к величине помещаемого в данную точку поля электрического заряда остается постоянным, следовательно, оно может служить характеристикой электрического поля.
Потенциальную энергию положительного единичного заряда, помещенного в данную точку поля, называют потенциалом электрического поля . Потенциал электрического поля
.
(1.24)
Если поле создано положительным точечным зарядом q, то
,
(1.25)
где q – величина заряда, создающего электрическое поле;
r – расстояние от центра заряда до рассматриваемой точки поля.
Потенциал электрического поля системы точечных зарядов равен алгебраической сумме потенциалов полей, создаваемых отдельно взятым зарядом системы:
,
(1.26)
где qi – величина i-го заряда;
ri – расстояние от i-го заряда до рассматриваемой точки поля.
Из выражения (1.24)
W = q.
Так как работа сил электрического поля равна убыли потенциальной энергии, т.е.
A1,2 = - W = W1 - W2 = q(1 - 2),
При перемещении положительного единичного электрического заряда из данной точки поля в бесконечность
A1, = W1 - W = q1,
а
.
Если q = q+
= 1, то
.
Следовательно, потенциал электрического поля численно равен работе сил электрического поля по перемещению положительного единичного заряда из данной точки поля в бесконечность.
В системе СИ потенциал и разность потенциалов измеряются в вольтах.
Один вольт – это потенциал такой точки электрического поля, находясь в которой заряд в 1 Кл обладает потенциальной энергией, равной 1 Дж.
1.3.5. Связь напряженности электрического поля
с его потенциалом
Каждая точка электрического поля характеризуется напряженностью и потенциалом (силовой и энергетической характеристиками). Между ними должна существовать связь, которую можно установить исходя из следующих соображений.
Элементарная работа, совершаемая силами электрического поля по перемещению электрического заряда на расстояние dl,
dA = F∙dl∙cos = Fl∙dl = qEl∙dl.
Работа совершается за счет убыли (уменьшения) потенциальной энергии:
dA = - dW = - qd.
Следовательно, имеем
qEldl = - qd.
Отсюда
,
(1.27)
где
характеризует быстроту изменения
потенциала в данном направлении l
и называется
градиентом потенциала;
l – произвольно выбранное направление.
В векторной форме
grad
.
(1.28)
Знак "минус" означает, что вектор напряженности электрического поля направлен в сторону убывания потенциала.
Проинтегрировав формулу d = - Eldl, получим
;
.
Откуда
,
(1.29)
где d = lcos - расстояние между точками 1 и 2 поля.
В векторной форме выражение (1.28), можно представить так:
,
(1.30)
где
- единичные векторы координатных осей
x,
y,
z.
Потенциал – это скаляр, который может изменяться при переходе от точки к точке по величине. Вектор напряжённости в каждой точке имеет определённое направление, совпадающее с направлением наиболее быстрого убывания потенциала.