
- •Введение
- •Электростатическое поле в вакууме
- •Электрический заряд и его свойства. Закон Кулона
- •Электростатическое поле
- •1.2.1.Напряжённость электрического поля
- •1.2.2. Принцип суперпозиции электрических полей
- •1.2.3. Линии напряжённости.
- •1.2.4. Поток вектора напряжённости электростатического поля
- •1.2.5. Теорема Остроградского-Гаусса для электрического поля
- •1.2.6. Алгоритм применения теоремы
- •1.2.7. Электрическое поле бесконечно длинного,
- •1.2.8. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.2.9. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •Потенциальная энергия, работа поля электрического поля, потенциал точек электростатического поля
- •1.3.1.Основные понятия
- •1.3.2. Работа сил электростатического поля.
- •1.3.3. Энергия электрического заряда в электрическом поле
- •1.3.4. Потенциал и разность потенциалов электрического поля
- •1.3.5. Связь напряженности электрического поля
- •1.3.6. Эквипотенциальные поверхности и их свойства
- •2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электрическое поле на границе проводник - вакуум
- •2.3.Электрическая ёмкость. Конденсаторы
- •2.3.1. Электроемкость уединенного проводника
- •2.3.2. Конденсаторы и их емкость.
- •2.3.3. Соединения конденсаторов
- •3. Магнитное поле в вакууме и его характеристики
- •3.1. Магнитное поле, вектор магнитной индукции
- •3.2. Гипотеза Ампера
- •3.3. Закон Био – Савара – Лапласа и алгоритм его применения
- •3.4. Применение закона Био-Савара-Лапласа к расчету магнитных полей прямолинейного и кругового токов
- •3.4.1. Магнитное поле прямолинейного бесконечно длинного
- •3.4.2. Магнитное поле на оси кругового проводника с током
- •3.5. Магнитное взаимодействие токов. Силы Лоренца и Ампера
- •3.6. Циркуляция индукции магнитного поля. Вихревой характер магнитного поля. Теорема о циркуляции индукции магнитного поля (закон полного тока для магнитного поля)
- •3.7. Применение закона полного тока для расчета магнитных полей
- •Напряженность магнитного поля тороида
- •3.7.3. Напряженность магнитного поля внутри
- •3.8. Магнитный поток
- •4. ЭлектроМагнитное поле в веществе
- •4.1. Электрическое поле в веществе
- •4.1.1. Электрический и магнитный диполи.
- •4.1.2. Механизмы поляризации диэлектриков
- •4.1.3. Связанные заряды в диэлектриках.
- •4.1.4. Электрическое поле в диэлектриках.
- •4.1.5. Условия на границе раздела двух диэлектриков
- •4.1.6. Сегнетоэлектрики и их свойства.
- •4.2.Магнитное поле в веществе
- •4.2.1. Магнетизм атомов и молекул
- •4.2.2. Магнитное поле в веществе. Намагниченность
- •4.2.3. Диамагнетики и их свойства
- •4.2.4. Парамагнетики и их свойства
- •4.2.5. Ферромагнетики и их свойства
- •4.2.6. Граничные условия на поверхности раздела
- •5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина (сила) тока, плотность тока. Сторонние силы
- •5.3. Законы Ома для участка цепи, полной цепи, в дифференциальной форме. Сопротивление. Явление сверхпроводимости
- •5.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6. Электроны в кристаллах
- •6.1. Уровень Ферми. Элементы зонной теории кристаллов. Квантовая теория электропроводности металлов.
- •6.2. Электропроводность полупроводников. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •6.2.1. Собственная проводимость полупроводников
- •6 .2.2. Примесные полупроводники
- •6.3 Электромагнитные явления на границе раздела сред
- •6.3.2.Эффект Пельтье
- •6.3.3. Эффект термопары (Явление Зеебека)
- •7.2. Явление самоиндукции. Коэффициенты индуктивности и взаимной индуктивности
- •7.3. Взаимная индукция.
- •7.4. Явление самоиндукции при замыкании и размыкании электрической цепи
- •7.5. Энергия магнитного поля.
1.3.2. Работа сил электростатического поля.
Ц
иркуляция
вектора
Если в электростатическом поле точечного заряда q из точки 1 в точку 2 вдоль произвольной траектории перемещается другой точечный заряд qo (рис. 1.16), то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном перемещении dl равна:
(1.16)
где dr = dlcos.
Работа при перемещении заряда q из точки 1 в точку 2
, (1.17)
где k – коэффициент пропорциональности, зависящий от выбора системы единиц измерения физических величин. В системе СИ k = 1/40;
q1 – заряд, создающий электрическое поле;
q2 – заряд, перемещаемый в электрическом поле;
r1, r2 – начальное и конечное расстояния между зарядами.
Из формулы (1.17) видно, что работа сил электрического поля по перемещению электрического заряда не зависит от траектории перемещения, а определяется только начальным и конечным положением зарядов. Следовательно, электростатическое поле электрических зарядов является потенциальным, а электростатические силы – консервативными силами.
Кроме того, из формулы (1.17) следует, что работа, совершаемая при перемещении электрического заряда во внешнем электростатическом поле по любому замкнутому пути L, равна нулю, т.е.
. (1.18)
Если в качестве заряда, переносимого в электростатическом поле, взять положительный единичный точечный заряд, то элементарная работа сил поля на пути dl равна dA = Edl = Eldl, где El = Ecos - проекция вектора E на направление элементарного перемещения. Тогда формулу (1.18) можно записать в виде
. (1.19)
Интеграл
называют
циркуляцией
вектора напряженности электростатического
поля.
Следовательно, циркуляция вектора
напряженности электростатического
поля вдоль любого замкнутого контура
(1.19) равна нулю. Это еще раз подтверждает,
что электростатическое поле является
потенциальным. Из потенциальности
электростатического поля следует, что
линии напряженности электростатического
поля не могут быть замкнутыми – они
начинаются и заканчиваются на зарядах
или же уходят в бесконечность.
Надо отметить, что формула (1.19) справедлива только для электростатического поля. Для электрических полей движущихся зарядов условие равенства нулю циркуляции вектора напряженности не выполняется. Для таких полей она отлична от нуля.
1.3.3. Энергия электрического заряда в электрическом поле
При перемещении электрического заряда под действием сил электрического поля происходит изменение его первоначального положения, что влечет за собой изменение потенциальной энергии системы. Поэтому можно утверждать, что работа сил электрического поля совершается за счет изменения (уменьшения) потенциальной энергии:
A = W1 - W2 = W. (1.20)
Формула (1.20) определяет изменение потенциальной энергии, а не её величину. Следовательно, можно условно выбрать такое положение электрического заряда, при котором потенциальная энергия системы равна нулю. Принято считать потенциальную энергию системы зарядов, равной нулю, в том случае, когда один из них удален от другого на бесконечность, т.е., например, W2 = W = 0. Тогда W1 = A.
Таким образом, потенциальная энергия заряда, находящегося в электрическом поле другого заряда (потенциальная энергия двух электрических зарядов, системы из двух электрических зарядов), измеряется (численно равна) работой, которую совершают силы электрического поля по удалению одного из зарядов из данной точки поля в бесконечность.
Так как
(1.21)
и при r2, W20, в предельном случае при r2 = , W2 = 0, то
. (1.22)
Формула (1.22) определяет потенциальную энергию заряда, находящегося в электрическом поле другого заряда (потенциальную энергию двух электрических зарядов, системы из двух электрических зарядов).
Так как положение зарядов было выбрано произвольно, то в общем случае потенциальная энергия заряда, находящегося в электрическом поле другого заряда (потенциальная энергия двух электрических зарядов, системы из двух электрических зарядов) определяется так:
, (1.23)
где r – расстояние между центрами взаимодействующих зарядов или до рассматриваемой точки поля, в которую помещается электрический заряд.