Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электректричество-магн-2009.doc
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
3.55 Mб
Скачать

6.2. Электропроводность полупроводников. Собственные и примесные полупроводники. Понятие о p-n – переходе

6.2.1. Собственная проводимость полупроводников

Полупроводниками называют класс веществ (твердых тел), у которых полностью занята электронами валентная зона, отделенная от зоны проводимости узкой (порядка 1 эВ) запрещенной зоной. Их электропроводность меньше электропроводности металлов, но больше электропроводности диэлектриков.

К полупроводникам относятся элементы (Si, Ge, As, Se, Te…), химические соединения (оксиды, сульфиды, селениды), сплавы элементов различных групп.

О сновным признаком, выделяющим полупроводники как особый класс веществ, является сильное влияние температуры и концентрации примесей на их электрическую проводимость.

Различают собственные и примесные полупроводники. Электропроводность чистых полупроводников (в которых совершенно отсутствуют примеси) называют собственной проводимостью.

К собственным полупроводникам относятся германий и кремний. Молекулярная структура кремния представлена на рис.6.8, где:

- ядро и внутренние электронные оболочки;

- дырка, вакансия с отсутствующей связью;

- валентные электроны, образующие ковалентную связь.

У германия и кремния – одинаковая кристаллическая решетка: каждый атом окружен четырьмя атомами, находящимися в вершинах правильного тетраэдра. На наружной оболочке атома имеется по четыре валентных электрона, поэтому каждый атом образует четыре ковалентных связи с четырьмя ближайшими от него соседями.

На рис. 6.9 показана энергетическая структура электронов в полупроводнике. При Т=0 все уровни валентной зоны заняты, а уровень Ферми лежит в запрещенной зоне, отделяющей зону проводимости. При этом в зоне проводимости электронов нет. Для полупроводников характерно, что ширина запрещенной зоны составляет до 10 кТ. При комнатных температурах размытость функции Ферми-Дирака перекрывает , и вероятность перехода электронов валентной зоны в зону проводимости не равна 0.

Таким образом, в полупроводниках (что их коренным образом отличает от диэлектриков) сравнительно небольшие энергетические воздействия, обусловленные нагревом или облучением, могут привести к отрыву некоторых электронов от своих атомов. В этом состоит механизм образования носителей в чистых полупроводниках.

При температуре T=0 K и отсутствии других внешних факторов собственные полупроводники ведут себя как диэлектрики. При повышении температуры электроны с верхних уровней валентной зоны могут перейти на нижние уровни зоны проводимости. При наложении электрического поля электроны перемешаются против поля. В полупроводнике появляется электрический ток. Проводимость собственных полупроводников, обусловленная электронами, называется электронной проводимостью, или проводимостью n - типа.

Из-за теплового перехода электронов в валентной зоне возникают вакантные состояния, получившие название дырок. Во внешнем электрическом поле на освободившееся от электрона место, дырку, может перейти электрон с соседнего уровня, а дырка появится в том месте, которое покинул электрон и т.д. Такой процесс заполнения дырок электронами равноценен перемещению дырки в направлении, противоположном перемещению электрона. В действительности дырки не перемещаются. Проводимость собственных полупроводников, обусловленная дырками (квазичастицами), называется дырочной проводимостью, или проводимостью p - типа.

Таким образом, в собственных полупроводниках наблюдаются два механизма проводимости: электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне. Следовательно, если концентрация электронов проводимости и дырок равна соответственно ne и np, то ne = np.

Проводимость собственных полупроводников всегда является возбужденной, т.е. появляется только под действием внешних факторов (повышения температуры, облучения, сильных электрических полей и т.д.).

В собственном полупроводнике уровень Ферми находится в середине запрещенной зоны. При переходе электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости затрачивается энергия активации, равная ширине запрещенной зоны E, что приводит к появлению в валентной зоне дырки. Энергия, затраченная на возникновение пары носителей тока, должна делится на две равные части. Следовательно, начало отсчета для каждого из этих процессов должно находиться в середине запрещенной зоны. Энергия Ферми в собственном полупроводнике представляет собой энергию, от которой возникает возбуждение электронов и дырок.

Удельная проводимость собственных полупроводников

,

где o – постоянная, характерная для данного полупроводника.

Удельное электросопротивление полупроводников

.

Увеличение проводимости полупроводников с повышением температуры объясняется тем, что с повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости и участвуют в проводимости.