
- •Введение
- •Электростатическое поле в вакууме
- •Электрический заряд и его свойства. Закон Кулона
- •Электростатическое поле
- •1.2.1.Напряжённость электрического поля
- •1.2.2. Принцип суперпозиции электрических полей
- •1.2.3. Линии напряжённости.
- •1.2.4. Поток вектора напряжённости электростатического поля
- •1.2.5. Теорема Остроградского-Гаусса для электрического поля
- •1.2.6. Алгоритм применения теоремы
- •1.2.7. Электрическое поле бесконечно длинного,
- •1.2.8. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.2.9. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •Потенциальная энергия, работа поля электрического поля, потенциал точек электростатического поля
- •1.3.1.Основные понятия
- •1.3.2. Работа сил электростатического поля.
- •1.3.3. Энергия электрического заряда в электрическом поле
- •1.3.4. Потенциал и разность потенциалов электрического поля
- •1.3.5. Связь напряженности электрического поля
- •1.3.6. Эквипотенциальные поверхности и их свойства
- •2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электрическое поле на границе проводник - вакуум
- •2.3.Электрическая ёмкость. Конденсаторы
- •2.3.1. Электроемкость уединенного проводника
- •2.3.2. Конденсаторы и их емкость.
- •2.3.3. Соединения конденсаторов
- •3. Магнитное поле в вакууме и его характеристики
- •3.1. Магнитное поле, вектор магнитной индукции
- •3.2. Гипотеза Ампера
- •3.3. Закон Био – Савара – Лапласа и алгоритм его применения
- •3.4. Применение закона Био-Савара-Лапласа к расчету магнитных полей прямолинейного и кругового токов
- •3.4.1. Магнитное поле прямолинейного бесконечно длинного
- •3.4.2. Магнитное поле на оси кругового проводника с током
- •3.5. Магнитное взаимодействие токов. Силы Лоренца и Ампера
- •3.6. Циркуляция индукции магнитного поля. Вихревой характер магнитного поля. Теорема о циркуляции индукции магнитного поля (закон полного тока для магнитного поля)
- •3.7. Применение закона полного тока для расчета магнитных полей
- •Напряженность магнитного поля тороида
- •3.7.3. Напряженность магнитного поля внутри
- •3.8. Магнитный поток
- •4. ЭлектроМагнитное поле в веществе
- •4.1. Электрическое поле в веществе
- •4.1.1. Электрический и магнитный диполи.
- •4.1.2. Механизмы поляризации диэлектриков
- •4.1.3. Связанные заряды в диэлектриках.
- •4.1.4. Электрическое поле в диэлектриках.
- •4.1.5. Условия на границе раздела двух диэлектриков
- •4.1.6. Сегнетоэлектрики и их свойства.
- •4.2.Магнитное поле в веществе
- •4.2.1. Магнетизм атомов и молекул
- •4.2.2. Магнитное поле в веществе. Намагниченность
- •4.2.3. Диамагнетики и их свойства
- •4.2.4. Парамагнетики и их свойства
- •4.2.5. Ферромагнетики и их свойства
- •4.2.6. Граничные условия на поверхности раздела
- •5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина (сила) тока, плотность тока. Сторонние силы
- •5.3. Законы Ома для участка цепи, полной цепи, в дифференциальной форме. Сопротивление. Явление сверхпроводимости
- •5.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6. Электроны в кристаллах
- •6.1. Уровень Ферми. Элементы зонной теории кристаллов. Квантовая теория электропроводности металлов.
- •6.2. Электропроводность полупроводников. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •6.2.1. Собственная проводимость полупроводников
- •6 .2.2. Примесные полупроводники
- •6.3 Электромагнитные явления на границе раздела сред
- •6.3.2.Эффект Пельтье
- •6.3.3. Эффект термопары (Явление Зеебека)
- •7.2. Явление самоиндукции. Коэффициенты индуктивности и взаимной индуктивности
- •7.3. Взаимная индукция.
- •7.4. Явление самоиндукции при замыкании и размыкании электрической цепи
- •7.5. Энергия магнитного поля.
5.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
Закон Ома позволяет рассчитывать электрические цепи, в которых все элементы (проводники) соединены последовательно и в которых существует один и тот же ток.
На практике чаще всего встречаются электрические цепи с большим количеством разветвлений, токи в которых неравны (разветвленные электрические цепи).
Д
ля
упрощения расчетов таких цепей пользуются
правилами (законами) Кирхгофа (1847 г.).
Рассмотрим произвольную цепь, состоящую
из нескольких проводников и источников
тока (рис. 5.1).
Будем называть все точки, в которых сходятся не менее трех токов (проводников) узловыми точками или узлами (A и B). Участки цепи между узлами – ветвями (например, AE1R1R4B), а участки цепи, состоящие из нескольких ветвей и образующие замкнутую цепь, – контурами (например, AE1R1R4BE2R2A).
Условимся считать подходящие к узлу токи положительными токами, отходящие - отрицательными. Введя данные определения, сформулируем законы Кирхгофа:
Первый закон: Алгебраическая сумма токов, сходящихся в узле, равна нулю, т. е.
.
(5.5)
В нашем случае для узла A
.
При решении задач на основании первого закона Кирхгофа можно составить (n – 1) уравнение, где n – число узлов. Так как число узловых точек всегда меньше числа неизвестных величин, то для их определения составляют ряд дополнительных уравнений, пользуясь вторым законом Кирхгофа.
Второй закон: Алгебраическая сумма падений напряжений на отдельных участках замкнутой цепи (замкнутого независимого контура) равна алгебраической сумме ЭДС, действующих в них, т. е.
.
(5.6)
На основании второго закона Кирхгофа составляют (m – 1) уравнение, где m – число независимых контуров, т.е. таких, которые содержат хотя бы один элемент, не входящий в предыдущие контуры. В рассматриваемом случае число независимых контуров равно 3. Выбирается (произвольно) направление обхода контура. Ток, совпадающий по направлению с направлением обхода контура, считают положительным, а не совпадающий – отрицательным. ЭДС, действующую внутри контура, считают положительной, если при обходе контура внутри её происходит повышение потенциала (от минуса к плюсу), в противном случае – отрицательной. Падение напряжения на участке цепи считают положительным, если направление тока на нем совпадает с направлением обхода контура.
В рассматриваемом случае для независимого контура AE1R1R4BE2R2A (без учета падения напряжения на внутреннем сопротивлении источников тока)
.
Для независимого контура AR2E2E3R3A (без учета падения напряжения на внутреннем сопротивлении источников тока)
.
Таким образом, в рассматриваемом случае имеем систему уравнений
(5.7)
Решая систему уравнений (5.7), можно определить неизвестные, заданные условием задачи.
Надо отметить, что первоначальный выбор направлений токов и обхода контуров не играет никакой роли. После проведения расчетов значение токов будет получено со знаком, при этом знак "плюс" будет соответствовать правильному выбору направления тока в элементе цепи, "минус" – обратному.
Лекция №8
(Квантовая теория электропроводности металлов. Уровень Ферми. Элементы зонной теории кристаллов. Электропроводность полупроводников. Собственные и примесные полупроводники. Понятие о p-n- переходе.
Электромагнитные явления на границе раздела сред. p-n- переход. Термоэлектрические явления.
Явление Зеебека. Эффект Пельтье.)