
- •Введение
- •Электростатическое поле в вакууме
- •Электрический заряд и его свойства. Закон Кулона
- •Электростатическое поле
- •1.2.1.Напряжённость электрического поля
- •1.2.2. Принцип суперпозиции электрических полей
- •1.2.3. Линии напряжённости.
- •1.2.4. Поток вектора напряжённости электростатического поля
- •1.2.5. Теорема Остроградского-Гаусса для электрического поля
- •1.2.6. Алгоритм применения теоремы
- •1.2.7. Электрическое поле бесконечно длинного,
- •1.2.8. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.2.9. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •Потенциальная энергия, работа поля электрического поля, потенциал точек электростатического поля
- •1.3.1.Основные понятия
- •1.3.2. Работа сил электростатического поля.
- •1.3.3. Энергия электрического заряда в электрическом поле
- •1.3.4. Потенциал и разность потенциалов электрического поля
- •1.3.5. Связь напряженности электрического поля
- •1.3.6. Эквипотенциальные поверхности и их свойства
- •2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электрическое поле на границе проводник - вакуум
- •2.3.Электрическая ёмкость. Конденсаторы
- •2.3.1. Электроемкость уединенного проводника
- •2.3.2. Конденсаторы и их емкость.
- •2.3.3. Соединения конденсаторов
- •3. Магнитное поле в вакууме и его характеристики
- •3.1. Магнитное поле, вектор магнитной индукции
- •3.2. Гипотеза Ампера
- •3.3. Закон Био – Савара – Лапласа и алгоритм его применения
- •3.4. Применение закона Био-Савара-Лапласа к расчету магнитных полей прямолинейного и кругового токов
- •3.4.1. Магнитное поле прямолинейного бесконечно длинного
- •3.4.2. Магнитное поле на оси кругового проводника с током
- •3.5. Магнитное взаимодействие токов. Силы Лоренца и Ампера
- •3.6. Циркуляция индукции магнитного поля. Вихревой характер магнитного поля. Теорема о циркуляции индукции магнитного поля (закон полного тока для магнитного поля)
- •3.7. Применение закона полного тока для расчета магнитных полей
- •Напряженность магнитного поля тороида
- •3.7.3. Напряженность магнитного поля внутри
- •3.8. Магнитный поток
- •4. ЭлектроМагнитное поле в веществе
- •4.1. Электрическое поле в веществе
- •4.1.1. Электрический и магнитный диполи.
- •4.1.2. Механизмы поляризации диэлектриков
- •4.1.3. Связанные заряды в диэлектриках.
- •4.1.4. Электрическое поле в диэлектриках.
- •4.1.5. Условия на границе раздела двух диэлектриков
- •4.1.6. Сегнетоэлектрики и их свойства.
- •4.2.Магнитное поле в веществе
- •4.2.1. Магнетизм атомов и молекул
- •4.2.2. Магнитное поле в веществе. Намагниченность
- •4.2.3. Диамагнетики и их свойства
- •4.2.4. Парамагнетики и их свойства
- •4.2.5. Ферромагнетики и их свойства
- •4.2.6. Граничные условия на поверхности раздела
- •5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина (сила) тока, плотность тока. Сторонние силы
- •5.3. Законы Ома для участка цепи, полной цепи, в дифференциальной форме. Сопротивление. Явление сверхпроводимости
- •5.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6. Электроны в кристаллах
- •6.1. Уровень Ферми. Элементы зонной теории кристаллов. Квантовая теория электропроводности металлов.
- •6.2. Электропроводность полупроводников. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •6.2.1. Собственная проводимость полупроводников
- •6 .2.2. Примесные полупроводники
- •6.3 Электромагнитные явления на границе раздела сред
- •6.3.2.Эффект Пельтье
- •6.3.3. Эффект термопары (Явление Зеебека)
- •7.2. Явление самоиндукции. Коэффициенты индуктивности и взаимной индуктивности
- •7.3. Взаимная индукция.
- •7.4. Явление самоиндукции при замыкании и размыкании электрической цепи
- •7.5. Энергия магнитного поля.
3.6. Циркуляция индукции магнитного поля. Вихревой характер магнитного поля. Теорема о циркуляции индукции магнитного поля (закон полного тока для магнитного поля)
Циркуляцией вектора напряженности магнитного поля по замкнутому контуру L (или просто циркуляцией вектора напряженности магнитного поля) называют интеграл
.
Из закона Био-Савара-Лапласа и принципа суперпозиции магнитных полей как экспериментальных факторов вытекает важное следствие, которое облегчает расчеты магнитных полей. Для установления этого следствия проведем в магнитном поле некоторую замкнутую линию L (контур произвольной формы и произвольных размеров) (рис. 3.11).
Разобьем ее на
элементарные участки
.
Для каждого из участков составим
произведение
,где
- угол между направлением
и касательной к контуру. Проинтегрировав,
получим
.
С учетом того, что
напряженность магнитного поля от
бесконечно длинного проводника с током
,
а
,
имеем
.
Таким образом,
.
При изменении
направления тока в проводнике в каждой
точке поля вектор
изменит свое направление на обратное.
Косинусы углов
будут иметь противоположный знак, и
интеграл будет отрицательным. Знак
интеграла изменится также и при перемене
направления обхода контура L, вследствие
чего изменятся направления касательных.
Ввиду этого направление обхода и
направление тока должны быть связаны
между собой правилом "правого винта».
Е
сли
внутри замкнутого контура находятся n
токов, то
(3.35)
Если ток протекает вне контура (рис. 3.12), то в этом случае можно записать
С
оотношение
справедливо и в том случае, когда контур
и проводник имеют произвольную форму.
Если ток направлен «на нас», то вектор
направлен «против часовой стрелки»
(рис.3.13). В этом случае
и
.
В результате получим
.
Е
сли
же контур охватывает
проводников с токами, направленными в
разные стороны, то, учитывая, что от
положения проводника внутри контура
не зависит циркуляция
,
можем мысленно собрать все проводники
в «жгут», толщина которого
в силу конечности
мала. По «жгуту» протекает ток, равный
алгебраической сумме токов отдельных
проводников (рис. 3.14).
Утверждение (3.35), что циркуляция вектора напряженности магнитного поля по замкнутому контуру L равна алгебраической сумме токов, охватываемых контуром, называется теоремой о циркуляции магнитного поля или законом полного тока в интегральной форме. Таким образом, из закона полного тока вытекают следующие следствия:
а) если направление обхода контура и направление тока в проводнике не связаны между собой правилом правого винта, то значение
,
сохранив величину, изменит знак;
б) если контур, расположенный в магнитном поле, не охватывает ток или алгебраическая сумма токов внутри замкнутого контура равна нулю, то
.
Зная связь между вектором напряженности и вектором индукции магнитного поля, можно записать закон полного тока в интегральной форме для циркуляции вектора индукции:
.
(3.36)
Так как
,
,
то магнитному полю нельзя приписать
какой-либо потенциал, а это означает,
что магнитное поле является вихревым,
а не потенциальным.
Закон полного тока в виде (3.35) и (3.36) справедлив только для поля в вакууме, поскольку для поля в веществе надо учитывать молекулярные токи.