
- •Введение
- •Электростатическое поле в вакууме
- •Электрический заряд и его свойства. Закон Кулона
- •Электростатическое поле
- •1.2.1.Напряжённость электрического поля
- •1.2.2. Принцип суперпозиции электрических полей
- •1.2.3. Линии напряжённости.
- •1.2.4. Поток вектора напряжённости электростатического поля
- •1.2.5. Теорема Остроградского-Гаусса для электрического поля
- •1.2.6. Алгоритм применения теоремы
- •1.2.7. Электрическое поле бесконечно длинного,
- •1.2.8. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.2.9. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •Потенциальная энергия, работа поля электрического поля, потенциал точек электростатического поля
- •1.3.1.Основные понятия
- •1.3.2. Работа сил электростатического поля.
- •1.3.3. Энергия электрического заряда в электрическом поле
- •1.3.4. Потенциал и разность потенциалов электрического поля
- •1.3.5. Связь напряженности электрического поля
- •1.3.6. Эквипотенциальные поверхности и их свойства
- •2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электрическое поле на границе проводник - вакуум
- •2.3.Электрическая ёмкость. Конденсаторы
- •2.3.1. Электроемкость уединенного проводника
- •2.3.2. Конденсаторы и их емкость.
- •2.3.3. Соединения конденсаторов
- •3. Магнитное поле в вакууме и его характеристики
- •3.1. Магнитное поле, вектор магнитной индукции
- •3.2. Гипотеза Ампера
- •3.3. Закон Био – Савара – Лапласа и алгоритм его применения
- •3.4. Применение закона Био-Савара-Лапласа к расчету магнитных полей прямолинейного и кругового токов
- •3.4.1. Магнитное поле прямолинейного бесконечно длинного
- •3.4.2. Магнитное поле на оси кругового проводника с током
- •3.5. Магнитное взаимодействие токов. Силы Лоренца и Ампера
- •3.6. Циркуляция индукции магнитного поля. Вихревой характер магнитного поля. Теорема о циркуляции индукции магнитного поля (закон полного тока для магнитного поля)
- •3.7. Применение закона полного тока для расчета магнитных полей
- •Напряженность магнитного поля тороида
- •3.7.3. Напряженность магнитного поля внутри
- •3.8. Магнитный поток
- •4. ЭлектроМагнитное поле в веществе
- •4.1. Электрическое поле в веществе
- •4.1.1. Электрический и магнитный диполи.
- •4.1.2. Механизмы поляризации диэлектриков
- •4.1.3. Связанные заряды в диэлектриках.
- •4.1.4. Электрическое поле в диэлектриках.
- •4.1.5. Условия на границе раздела двух диэлектриков
- •4.1.6. Сегнетоэлектрики и их свойства.
- •4.2.Магнитное поле в веществе
- •4.2.1. Магнетизм атомов и молекул
- •4.2.2. Магнитное поле в веществе. Намагниченность
- •4.2.3. Диамагнетики и их свойства
- •4.2.4. Парамагнетики и их свойства
- •4.2.5. Ферромагнетики и их свойства
- •4.2.6. Граничные условия на поверхности раздела
- •5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина (сила) тока, плотность тока. Сторонние силы
- •5.3. Законы Ома для участка цепи, полной цепи, в дифференциальной форме. Сопротивление. Явление сверхпроводимости
- •5.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6. Электроны в кристаллах
- •6.1. Уровень Ферми. Элементы зонной теории кристаллов. Квантовая теория электропроводности металлов.
- •6.2. Электропроводность полупроводников. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •6.2.1. Собственная проводимость полупроводников
- •6 .2.2. Примесные полупроводники
- •6.3 Электромагнитные явления на границе раздела сред
- •6.3.2.Эффект Пельтье
- •6.3.3. Эффект термопары (Явление Зеебека)
- •7.2. Явление самоиндукции. Коэффициенты индуктивности и взаимной индуктивности
- •7.3. Взаимная индукция.
- •7.4. Явление самоиндукции при замыкании и размыкании электрической цепи
- •7.5. Энергия магнитного поля.
МИНОБРНАУКИ РОССИИ
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«ЮгоЗападный государственный университет»
ФИЗИКА
Конспект лекций
«Электромагнитные явления»
для студентов инженерно-технических специальностей
2011
Лекция №1
(Введение. Электрический заряд и его свойства. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей. Поток вектора напряженности электростатического поля. Теорема Остроградского-Гаусса для электрического поля в вакууме. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля.. Потенциал и разность потенциалов электрического поля. Напряженность электрического поля как градиент его потенциала.
Эквипотенциальные поверхности..)
Введение
Среди всех известных видов взаимодействия электромагнитное взаимодействие занимает первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных (положительных и отрицательных) частиц, электромагнитное взаимодействие между которыми, с одной стороны на много порядков интенсивнее гравитационного и слабого, а с другой – является дальнодействующим в отличие от сильного взаимодействия.
Электромагнитным взаимодействием определяется строение атомных оболочек, сцепление атомов в молекулы (силы химической связи) и образование конденсированного вещества (межатомное взаимодействие, межмолекулярное взаимодействие).
Электростатическое поле в вакууме
Электрический заряд и его свойства. Закон Кулона
Известно, что в природе существуют два вида электрических зарядов: положительные и отрицательные. Они могут существовать в виде элементарных частиц: электронов, протонов, позитронов, положительных и отрицательных ионов и др., а также "свободного электричества", но только в виде электронов.
Электрический заряд q характеризует способность тел или частиц к электромагнитным взаимодействиям.
q = Кл = Ас. (1Кл – это электрический заряд, проходящий через поперечное сечение проводника при силе тока 1А за время 1с.)
Свойства электрического заряда:
- Существует в двух видах - положительный и отрицательный. Одноимённые заряды отталкиваются, разноимённые – притягиваются.
- Электрический заряд дискретен, т.е заряд любого тела составляет целое кратное от элементарного электрического заряда е = 1,610-19Кл.
- Электрический заряд инвариантен – его величина не зависит от выбора системы отсчёта (т.е не зависит от того, движется заряд или покоится).
- Электрический заряд аддитивен – т.е. заряд любой системы тел (или системы частиц) равен сумме зарядов тел (частиц), входящих в систему.
- Электрический заряд подчиняется закону сохранения заряда:
В
замкнутой системе алгебраическая сумма
электрических зарядов остается величиной
постоянной:
(1.1)
Заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует, называется точечным зарядом.
Взаимодействие точечных зарядов описывает закон Кулона:
Сила взаимодействия двух точечных зарядов пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними:
,
(1.2)
где 0 = 8,8510-12 Ф/м – электрическая постоянная;
q1, q2 – величины взаимодействующих зарядов;
r
– расстояние между зарядами;
r0 – единичный вектор, показывающий направление силы.
Кулоновская сила направлена вдоль прямой, соединяющей взаимодействующие заряды, т.е является центральной.
В случае одноименных зарядов сила (сила отталкивания) положительна, разноименных (сила притяжения) – отрицательна (рис. 1.1).
Если взаимодействующие заряды находятся в однородной и изотропной среде, то Кулоновская сила:
,
(1.2/)
где - диэлектрическая проницаемость среды, которая показывает во сколько раз сила взаимодействия между зарядами в данной среде меньше их силы взаимодействия в вакууме.