
- •Режим в.
- •2) Каскады сдвига потенциальных уровней
- •Эквивалентная схема каскада с оэ, частотная характеристика
- •5.6.1.Влияние отрицательной обратной связи на параметры и характеристики усилителя
- •Математическая модель
- •Характеристики
- •Принципиальная схема
- •Интегратор.
- •2. Способы построения фильтров.
- •Необходимость эквивалентных схем
- •Резистор как способ увеличения потерь в последовательном колебательном контуре
- •1) Каскады усиления
- •1. Классификация, основные параметры и характеристики усилителей
- •3. Анализ частотной характеристики усилительного каскада.
- •2) Повторитель на операционном усилителе
- •Компенсационные стабилизаторы напряжения
- •1) Параметры оу
- •Параметры, характеризующие статическую точность оу
- •Динамические параметры оу
- •Вопрос1: смотреть билет №1, первый вопрос!
- •Вопрос2: смотреть билет №2, первый вопрос!
- •Вопрос 2:смотреть билет№13, второй вопрос! экзаменационный билет № 17
- •Вопрос1: смотреть билет №22, второй вопрос!
- •Вопрос2:
- •См 4 билет
- •См 6 билет
- •См 10 билет
- •Красная книга начиная с стр 101
Компенсационные стабилизаторы напряжения
Компенсационный стабилизатор напряжения (КСН) работает по иному принципу, нежели ПСН. Из названия видно, что КСН чего-то там компенсирует. В общем-то принцип действия КСН основан на изменении сопротивления регулирующего элемента в зависимости от управляющего сигнала. А вот и определение из книжки - КСН относятся к стабилизаторам непрерывного действия и представляют собой устройства автоматического регулирования, которые с заданной точностью поддерживают напряжение на нагрузке независимо от изменения входного напряжения и тока нагрузки. КСН бывают последовательного и параллельного типа. Для рывка рассмотрим структурную схему типичного КСН последовательного типа.
Рис. 3 - КСН последовательного типа
РЭ - это регулирующий элемент, в качестве которого чаще всего используется транзистор (биполярный или полевой), СУ - схема управления - собственно управляет работой РЭ. Иногда вместо СУ изображают усилитель постоянного тока (УПТ). Его задача - усилить сигнал рассогласования и подать его на РЭ. Д - делитель напряжения, ИОН - источник опорного напряжения. В качестве ИОН применяют схему параметрического стабилизатора. Источник опорного напряжения и делитель объединяют в так называемый измерительный элемент (ИЭ). Из-за включения РЭ последовательно с нагрузкой схема так и называется - последовательная.
Итак, источник опорного напряжения (ИОН) задает опорное напряжение, поступающее на вход СУ. С делителя часть выходного напряжения (соизмеримого с напряжением ИОН) также подается на вход схемы управления (СУ). В результате сравнения выходного напряжения (или его части) с опорным СУ управляет РЭ, сопротивление которого меняется в ту или иную сторону. Короче, если, к примеру, напряжение на входе скакнуло, эта фигня, естественно, передается на выход. Сигнал с делителя напряжения подается на схему управления и та, в свою очередь, сравнивая напряжение с ИОН, дает команду РЭ увеличить (уменьшить) сопротивление. В результате на нагрузке напряжение остается постоянным. Кроме того, измерительный элемент выделяет пульсации выпрямленного напряжения, поступающие на РЭ, который достаточно хорошо сглаживает их. При рассмотрении принципиальной схемы все станет ясней.
Параллельную схему КСН рассмотрим только в структуре. Ее изображение приведено на рисунке 4.
Рис.4 - КСН параллельного типа
Принцип действия такого стабилизатора основан на изменении проводимости РЭ (опять же, в соответствии с управляющим сигналом), вызывающее изменение падения напряжения на балластом резике. Эта схема хорошо работает при небольшом импульсном изменении тока нагрузки. Её основное достоинство - при импульсном изменении тока нагрузки не происходит изменения тока, потребляемого от сети.
Ну а теперь перейдем к самому главному: к схемам. Очень простая и понятная, так сказать, типичная схема приведена на рисунке 5.
Рис.5 - Принципиальная схема КСН.
Итак, разберем все деталюшки. Функции РЭ выполняет транзистор VT1. ИОН образован резиком R1 и стабилитроном VD1 (как видим, это параметрический стабилизатор). Делитель, соответственно, состоит из резиков R2-R4. На транзисторе VT2 собран усилитель постоянного тока (УПТ). ИОН задает для УПТ образцовое напряжение, которое вводится в цепь эмиттера транзистора VT2. На базу транзистора поступает напряжение с делителя. Если изменяется выходное напряжение, а соответственно, и напряжение на базе транзистора VT2, который сравнивая это напряжение с напряжением на эмиттере, задает РЭ такой режим работы, что сопротивление его перехода изменяется, и напряжение на нагрузке остается постоянным. С помощью резика R3 можно регулировать выходное напряжение.
В качестве регулирующего элемента при малом токе нагрузки (не больше 0,1-0,2 А) используются одиночные транзисторы. При больших токах нагрузки ставят составные и так называемые тройные составные транзисторы.
Такая схема обладает защитой от короткого замыкания (КЗ). При КЗ обесточивается стабилитрон VD1 и транзисторы VT1, VT2 закрываются. Правда злоупотреблять этим не следует (т. е. ради интереса замыкать плюс с минусом). Защита от КЗ кратковременная. Но работает!
На практике один из вариантов такой схемы можно встретить с резиком между коллектором и эмиттером РЭ. Он необходим для нормальной работы стабилизатора при отрицательных температурах. Иногда пишут, что резик, шунтирующий переход коллектор-эмиттер РЭ, служит для запуска стабилизатора. Ну в принципе, наверное, понятно, что для смены полярности необходимо поменять тип транзисторов, направление включения стабилитрона и, соответственно, полярность включения кондеров (на схеме не показаны).
Итак, практическая схема вышеописанного стабилизатора приведена ниже:
Рис. 6 - КСН
Эта схема содрана с блока питания магнитофона приставки "Карат МП-201С" и, как видно, отличие состоит лишь в кондерах и резике R1. Резиком R4 подстраивают выходное напряжение. Подбирая стабилитрон VD1 можно изменять выходное напряжение ( при изменении входного, соответственно). При этом надо менять сопротивление резика R1. Две черточки на его корпусе обозначают мощность, т. е. 2 Вт. При больших токах нагрузки резик R1 греется. Естественно, транзистор VT1 необходимо установить на радиатор, площадью хотя бы 50 см2, т. к. и он может "пыхнуть".
Одной из разновидностей схем такого рода является так называемая схема с "холодным" коллектором. Её отличием является то, что регулирующий транзистор включается в цепь общего провода, а не "горячего". А это значит, что изолировать транзистор от радиатора или радиатор от корпуса устройства не надо, чего не скажешь о схемах на рисунках 5 и 6. В этих схемах транзисторы вылетают, как с добрым утром, если забыли изолировать коллектор (для тех, кто в танке, коллектор мощных транзисторов электрически соединен с корпусом транзистора или его частью для лучшего теплового контакта). На рисунке 7 эта схема и показана. Схема слизана с журнала Радио аж за 1984 год (Радио №12/1984).
Рис. 7 - КСН с "холодным" коллектором
Как видно, практически никаких отличий от предыдущей схемы. В качестве регулирующего использован составной транзистор КТ827А. Его можно легко заменить двумя - КТ815 и КТ819. Недостаток схемы - меньший ток нагрузки, нежели у схемы на рисунке 6. Да к тому же для такого стабилизатора необходим отдельный выпрямитель . Другими словами, если нужно несколько стабилизаторов, то для каждого придется забабахать свой выпрямитель. Зато все регулирующие транзисторы можно поставить на один теплоотвод, не изолируя их.
БИЛЕТ № 15
1)
Дифференциальные каскады
Дифференциальный каскад – это схема, используемая для усиления разности напряжений двух входных сигналов. В идеальном случае выходной сигнал не зависит от уровня каждого из входных сигналов, а определяется только их разностью.
На рис. 2.14 показана схема ДК на биполярных транзисторах. Схема содержит два плеча, включающих транзисторы VT1 и VТ2 и резисторы Rк1 = Rк2 и токозадающий резистор R0. Ток I0, протекающий через резистор R0, не должен зависеть от входных сигналов. Для этого сопротивление резистора R0 выбирается большим или вместо него используется транзисторный генератор тока. В схеме используются два источника питания ЕП1 и ЕП2, вторые выводы которых подключены к общей точке. Наличие двух источников питания позволяет работать с сигналами любой полярности. Если оставить один источник питания, а вторую шину питания подключить к общей точке, возможно усиление сигналов только одной полярности.
Рис. 2.14
В общем случае дифференциальный каскад имеет два входа и два выхода, напряжения на которых Uвх1, Uвх2, Uвх1, Uвх2 отсчитываются от общей точки.
Различают синфазные и дифференциальные входные сигналы. Когда уровни сигналов на обоих входах равны (Uвх1 = Uвх2 = Uвх сф), такие сигналы называют синфазными. Роль синфазных сигналов обычно играют помехи. Если источник сигнала включен между входами ДК, то такой сигнал называют дифференциальным (разностным) Uвх д = Uвх1 –Uвх2. При дифференциальном включении входной сигнал делится пополам между одинаковыми транзисторами VТ1 и VТ2, причем составляющие напряжений на входах ДК относительно общей точки противоположны по знаку, или
и
.
(2.6)
Дифференциальный каскад должен эффективно усиливать дифференциальные сигналы и ослаблять синфазные.
Выходное напряжение может сниматься между выходами схемы; тогда оно называется выходным дифференциальным (или двухфазным) напряжением. При этом необходимо, чтобы следующий каскад имел дифференциальный вход. Кроме того, часто используют однофазный выход – снимают выходное напряжение между одним из выходов и общей точкой, при этом половина полезного сигнала, действующего на оставшемся выходе, не используется.
Рассмотрим преобразование синфазного сигнала в ДК. Пусть на входы схемы (рис. 2.14) подано синфазное напряжение (Uвх1= Uвх2= Uвх сф). В качестве выходного сигнала будем рассматривать однофазное напряжение на первом выходе.
Для анализа воспользуемся эквивалентной схемой, приведенной на рис. 2.15, содержащей одну половину ДК. Поскольку через транзистор VT1 протекает половина тока I0,резистор в эмиттерной цепи имеет сопротивление 2R0 (второе сопротивление 2R0 обеспечивает ток второй половины ДК).
Рис. 2.15
Схема на рис. 2.15 является усилительным каскадом с ОЭ, рассмотренным ранее. Воспользуемся формулой для расчета коэффициента усиления по напряжению
.
(2.7)
Из (2.7) видно, что если R0 >> Rк, то КUсф << 1. Иными словами, увеличивая сопротивление токозадающего резистора R0, можно уменьшать коэффициент передачи синфазного сигнала до требуемого уровня. Особенно эффективно подавление синфазного сигнала обеспечивается при замене R0 генератором тока.
Усиление дифференциального сигнала проанализируем с помощью схем (рис. 2.16). На этом рисунке показаны токи, протекающие в ДК под действием дифференциального напряжения Uвх д, В этом случае через резистор R0 помимо тока I0 (задаваемого источником Еп2) протекают одинаковые, но противоположно направленные составляющие токов эмиттеров Iэ1д, lэ2д транзисторов VT1 и VТ2. Таким образом, падение напряжения от протекания дифференциальных составляющих токов на резисторе R0 отсутствует и для дифференциальных сигналов потенциал точки А равен нулю. Следовательно, для дифференциальных сигналов справедлива эквивалентная схема (рис. 2.16, б), отличающаяся от схемы на рис. 2.15 отсутствием резистора R0.
Рис. 2.16
Определим коэффициент усиления по напряжению для дифференциального сигнала
.
(2.8)
где Rвх = r'б + rэ.
(так
как через один транзистор протекает
ток
).
Дифференциальные каскады, как правило, работают с малым током I0 << 1 мА, тогда Rвх ≈ rэ и
.
(2.9)
Таким образом, коэффициент усиления для дифференциального сигнала гораздо больше, чем для синфазного и достигает нескольких сотен (тысяч при использовании динамической нагрузки). Отметим, что усиление ДК можно регулировать, изменяя ток I0, что используется в программируемых операционных усилителях и перемножителях аналоговых сигналов.
Существует много вариантов построения дифференциальных каскадов, для увеличения коэффициента усиления применяют составные транзисторы. Для повышения входного сопротивления используют МДП-транзисторы, а вместо токозадающего резистора используют генератор стабильного тока.
На рис. 2.17 изображен ДК с динамической нагрузкой в виде токового зеркала на транзисторах VТЗ, VT4. Эта схема обладает высоким коэффициентом усиления (КUдсоставляет несколько тысяч) и однофазным выходом. Существенно, что в этой схеме сигнал транзистора VT1 не теряется, а с помощью токового зеркала передается в выходную цепь, складываясь с сигналом транзистора VТ2.
Рис. 2.17
2)
Билет №16