
- •1. Нелинейные сар. Понятия: «пространство состояний», «фазовая траектория», «фазовый портрет».
- •2. Проблема двойственности в линейном программировании.
- •3. Составляющие информационной системы (ис). Модели жизненного цикла ис.
- •4, 31. Методы определения оптимальных параметров настройки промышленных регуляторов.
- •5. Автоколебания в сар. Определение параметров автоколебаний с помощью графических построений.
- •6,14. Математическая постановка задач оптимального управления. Пример: «Нажимное устройство реверсивного прокатного стана».
- •7,11,59. Назначение, классификация, и функции субд. Структура субд и назначение основных компонентов. Транзакции. Свойства транзакций.
- •8,20. Оценка качества сар по временным характеристикам
- •9. Представление импульсного элемента при исследовании импульсных сар.
- •10. Синтез сар оптимальной по быстродействию.
- •12. Принципы системного подхода в моделировании. Сетевые модели.
- •13. Связь между спектрами сигналов на входе и выходе простейшего импульсного элемента. Теорема Котельникова.
- •15. Модели управления передачей, обработкой и хранением данных в информационных системах на основе технологии «клиент-сервер»
- •16. Непрерывно-стохастические модели на примере систем массового обслуживания.
- •17. Процессы конечной длительности в импульсных сар.
- •19, 55. Характеристика нормальных форм реляционной модели данных.
- •21. Алгебраический аналог критерия устойчивости Гурвица для исар.
- •22. Системы управления на основе нечеткой логики.
- •23. Реляционная модель данных. Понятие функциональной зависимости. Процесс нормализации базы данных.
- •Целостность данных
- •Реляционная алгебра
- •Нормализация базы данных
- •24. Синтез сар по логарифмическим характеристикам.
- •25. Метод гармонической линеаризации нелинейностей.
- •26. Системы управления на основе искусственных нейронных сетей.
- •27,35. Цифровые регуляторы и выбор периода квантования.
- •28. Аппроксимация кривых разгона методом площадей.
- •29. Характер движения в нелинейных и линейных сар.
- •30. Техническая диагностика. Математические основы технической диагностики.
- •32. Функции операционных систем: управление задачами, данными, исключениями и восстановлением.
- •33. Устойчивость линейных сар. Признаки устойчивости. Запасы устойчивости линейных сар.
- •34. Статистические методы распознавания. Метод Бейеса.
- •36. Реляционная алгебра Кодда
- •37. Устойчивость линейных непрерывных систем. Критерий устойчивости Найквиста.
- •38. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент.
- •Черный ящик
- •39. Определение, назначение и классификация компьютерных сетей. Базовые топологии локальных компьютерных сетей.
- •40. Уровни памяти в вычислительных системах и их взаимодействие. Регистры, кэш, озу, взу. Их типы и классификация.
- •41. Критерий устойчивости Михайлова для непрерывных и линейных сар.
- •Доказательство
- •42. Частотные методы идентификации динамических объектов.
- •43. Определение, назначение и классификация компьютерных сетей. Топология глобальной компьютерной сети.
- •44. Использование внешних устройств в компьютерной сети. Сетевые устройства ввода/вывода,
- •Хранение информации на сервере, файлообменники и внешние ресурсы. Сетевые устройства
- •Типы сетевых устройств Сетевые карты
- •45. Виды корректирующих средств в сар. Недостатки последовательной коррекции.
- •46. Типовые процессы регулирования.
- •Апериодический переходной процесс с минимальным временем регулирования.
- •Переходной процесс с 20%-ным перерегулированием и минимальным временем первого полупериода.
- •Переходной процесс, обеспечивающий минимум интегрального критерия качества.
- •47. Эталонная модель взаимодействия открытых систем osi. Характеристика уровней osi.
- •48. Регистровая память компьютера и её назначение. Типы регистров процессора в реальном режиме. Дополнительные регистры защищённого режима.
- •Новые системные регистры микропроцессоров i80x86
- •49. Гармоническая линеаризация. Физический смысл коэффициентов гармонической линеаризации.
- •50. Идентификация объектов по временным характеристикам. Определение кривой разгона объекта по его импульсной характеристике.
- •51. Общая структура современных асу тп
- •53. Устойчивость нелинейных систем. Метод л.С. Гольдфарба.
- •54. Идентификация динамических систем. Активные и пассивные методы идентификации.
- •Внутренние и внешние, параллельные и последовательные интерфейсы компьютера. Примеры интерфейсов и шин, их основные характеристики.
- •Последовательный и параллельный интерфейсы ввода-вывода
- •57. Точные методы исследования устойчивости и автоколебаний в нелинейных системах. Частотный метод в.М. Попова.
- •58. Методы аппроксимации кривых разгона объекта.
- •61. 65. Статические характеристики нелинейных элементов.
- •62. Обеспечивающие подсистемы информационно - управляющих систем и их характеристики.
- •63. Методы расчета осау. Вариационный метод.
- •Вариационное исчисление
- •64. Назначение системы прерываний эвм. Синхронные и асинхронные, внутренние и внешние прерывания.
- •66. Промышленные регуляторы, их назначение и передаточные функции.
- •67. Функциональные подсистемы информационно- управляющих систем и их характеристики.
- •68. Виртуальные ресурсы в компьютерных сетях. Виртуальные накопители, виртуальные внешние устройства, виртуальная память и виртуальные процессоры.
- •Виртуализация устройств и структура драйвера
- •69. Классификация задач оптимального управления.
- •70. Организационные подсистемы информационно- управляющих систем и их характеристики.
- •71. Методы расчета оптимальных осау. Принцип максимума Понтрягина.
- •Вариационное исчисление
- •Принцип максимума Понтрягина
- •74. Принципы построения автоматизированных систем управления.
- •76. Типы команд и разновидности адресации в микропроцессорах. Cisc, risc и vliw процессоры.
- •Cisc-процессоры
- •Risc-процессоры
- •Vliw-процессоры
- •77. Понятие области нормальных режимов регулятора (онр) и области допустимых настроек регулятора (одн)
- •78. Состав интегрированной системы автоматизации предприятия.
- •79. Математическая модель и математическое моделирование. Этапы математического моделирования.
- •Функционально полные наборы логических элементов
79. Математическая модель и математическое моделирование. Этапы математического моделирования.
Математическая модель - приближенное описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики
Важно так «сконструировать» приближенную математическую модель, чтобы она достаточно точно отражала характерные свойства рассматриваемого явления. При этом могут быть опущены несущественные и второстепенные свойства явления с тем, чтобы эта модель была доступна для исследования на данном уровне развития вычислительной техники.
Математическое моделирование - изучение явления с помощью математической модели.
Классическим примером математического моделирования является описание и исследование основных законов механики И.Ньютона средствами математики.
С точки зрения развития знаний человечества о естествознании и исследования законов природы, техники, общества и науки на основе математических моделей процесс решения конкретной проблемы можно разбить на следующие этапы.
Формулировка законов, связывающих основные объекты модели.
Исследование математических задач, к которым приводят
математические модели.
Проверка: удовлетворяет ли принятая (гипотетическая) модель критерию
практики.
Последующий анализ модели в связи с накоплением данных об изучаемых явлениях и модернизация модели.
Первый этап требует широкого знания фактов, относящихся к изучаемым явлениям, и глубокого проникновения в их взаимосвязи. Эта стадия завершается записью в математических терминах сформулированных качественных представлений о связях между объектами модели.
На втором этапе важную роль приобретают математический аппарат, необходимый для анализа математической модели, и вычислительная техника - мощное средство для получения количественной выходной информации как результата решения сложных математических задач. Часто математические задачи, возникающие на основе различных математических моделей явлений бывают одинаковыми. Приведем пример: основная задача линейного программирования отражает ситуации различной природы. Это дает обоснование считать эти различные математические модели гомоморфными по отношению к математическим задачам, к которым эти модели приводятся. Такие типичные математические задачи исследуются учеными и инженерами как самостоятельный объект, абстрагируясь от изучаемых явлений.
На третьем этапе проверяется, согласуются ли результаты наблюдений с теоретическими следствиями модели в пределах точности наблюдений. Применение критерия практики к оценке математической модели позволяет делать вывод о правильности положений, лежащих в основе подлежащей изучению (гипотетической) модели. Этот метод является единственным методом изучения недоступных нам явлений макро- и микромира.
Перейдем к четвертому этапу. В процессе развития науки и техники данные об изучаемых явлениях все более и более уточняются и наступает момент, когда выводы, получаемые на основании принятой математической модели, не соответствуют нашим знаниям о явлении. Таким образом, возникает необходимость построения новой, более совершенной математической модели.
80. Логические элементы и цифровые устройства. Понятие функционально- полного набора логических элементов, примеры логических базисов.