
- •1. Нелинейные сар. Понятия: «пространство состояний», «фазовая траектория», «фазовый портрет».
- •2. Проблема двойственности в линейном программировании.
- •3. Составляющие информационной системы (ис). Модели жизненного цикла ис.
- •4, 31. Методы определения оптимальных параметров настройки промышленных регуляторов.
- •5. Автоколебания в сар. Определение параметров автоколебаний с помощью графических построений.
- •6,14. Математическая постановка задач оптимального управления. Пример: «Нажимное устройство реверсивного прокатного стана».
- •7,11,59. Назначение, классификация, и функции субд. Структура субд и назначение основных компонентов. Транзакции. Свойства транзакций.
- •8,20. Оценка качества сар по временным характеристикам
- •9. Представление импульсного элемента при исследовании импульсных сар.
- •10. Синтез сар оптимальной по быстродействию.
- •12. Принципы системного подхода в моделировании. Сетевые модели.
- •13. Связь между спектрами сигналов на входе и выходе простейшего импульсного элемента. Теорема Котельникова.
- •15. Модели управления передачей, обработкой и хранением данных в информационных системах на основе технологии «клиент-сервер»
- •16. Непрерывно-стохастические модели на примере систем массового обслуживания.
- •17. Процессы конечной длительности в импульсных сар.
- •19, 55. Характеристика нормальных форм реляционной модели данных.
- •21. Алгебраический аналог критерия устойчивости Гурвица для исар.
- •22. Системы управления на основе нечеткой логики.
- •23. Реляционная модель данных. Понятие функциональной зависимости. Процесс нормализации базы данных.
- •Целостность данных
- •Реляционная алгебра
- •Нормализация базы данных
- •24. Синтез сар по логарифмическим характеристикам.
- •25. Метод гармонической линеаризации нелинейностей.
- •26. Системы управления на основе искусственных нейронных сетей.
- •27,35. Цифровые регуляторы и выбор периода квантования.
- •28. Аппроксимация кривых разгона методом площадей.
- •29. Характер движения в нелинейных и линейных сар.
- •30. Техническая диагностика. Математические основы технической диагностики.
- •32. Функции операционных систем: управление задачами, данными, исключениями и восстановлением.
- •33. Устойчивость линейных сар. Признаки устойчивости. Запасы устойчивости линейных сар.
- •34. Статистические методы распознавания. Метод Бейеса.
- •36. Реляционная алгебра Кодда
- •37. Устойчивость линейных непрерывных систем. Критерий устойчивости Найквиста.
- •38. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент.
- •Черный ящик
- •39. Определение, назначение и классификация компьютерных сетей. Базовые топологии локальных компьютерных сетей.
- •40. Уровни памяти в вычислительных системах и их взаимодействие. Регистры, кэш, озу, взу. Их типы и классификация.
- •41. Критерий устойчивости Михайлова для непрерывных и линейных сар.
- •Доказательство
- •42. Частотные методы идентификации динамических объектов.
- •43. Определение, назначение и классификация компьютерных сетей. Топология глобальной компьютерной сети.
- •44. Использование внешних устройств в компьютерной сети. Сетевые устройства ввода/вывода,
- •Хранение информации на сервере, файлообменники и внешние ресурсы. Сетевые устройства
- •Типы сетевых устройств Сетевые карты
- •45. Виды корректирующих средств в сар. Недостатки последовательной коррекции.
- •46. Типовые процессы регулирования.
- •Апериодический переходной процесс с минимальным временем регулирования.
- •Переходной процесс с 20%-ным перерегулированием и минимальным временем первого полупериода.
- •Переходной процесс, обеспечивающий минимум интегрального критерия качества.
- •47. Эталонная модель взаимодействия открытых систем osi. Характеристика уровней osi.
- •48. Регистровая память компьютера и её назначение. Типы регистров процессора в реальном режиме. Дополнительные регистры защищённого режима.
- •Новые системные регистры микропроцессоров i80x86
- •49. Гармоническая линеаризация. Физический смысл коэффициентов гармонической линеаризации.
- •50. Идентификация объектов по временным характеристикам. Определение кривой разгона объекта по его импульсной характеристике.
- •51. Общая структура современных асу тп
- •53. Устойчивость нелинейных систем. Метод л.С. Гольдфарба.
- •54. Идентификация динамических систем. Активные и пассивные методы идентификации.
- •Внутренние и внешние, параллельные и последовательные интерфейсы компьютера. Примеры интерфейсов и шин, их основные характеристики.
- •Последовательный и параллельный интерфейсы ввода-вывода
- •57. Точные методы исследования устойчивости и автоколебаний в нелинейных системах. Частотный метод в.М. Попова.
- •58. Методы аппроксимации кривых разгона объекта.
- •61. 65. Статические характеристики нелинейных элементов.
- •62. Обеспечивающие подсистемы информационно - управляющих систем и их характеристики.
- •63. Методы расчета осау. Вариационный метод.
- •Вариационное исчисление
- •64. Назначение системы прерываний эвм. Синхронные и асинхронные, внутренние и внешние прерывания.
- •66. Промышленные регуляторы, их назначение и передаточные функции.
- •67. Функциональные подсистемы информационно- управляющих систем и их характеристики.
- •68. Виртуальные ресурсы в компьютерных сетях. Виртуальные накопители, виртуальные внешние устройства, виртуальная память и виртуальные процессоры.
- •Виртуализация устройств и структура драйвера
- •69. Классификация задач оптимального управления.
- •70. Организационные подсистемы информационно- управляющих систем и их характеристики.
- •71. Методы расчета оптимальных осау. Принцип максимума Понтрягина.
- •Вариационное исчисление
- •Принцип максимума Понтрягина
- •74. Принципы построения автоматизированных систем управления.
- •76. Типы команд и разновидности адресации в микропроцессорах. Cisc, risc и vliw процессоры.
- •Cisc-процессоры
- •Risc-процессоры
- •Vliw-процессоры
- •77. Понятие области нормальных режимов регулятора (онр) и области допустимых настроек регулятора (одн)
- •78. Состав интегрированной системы автоматизации предприятия.
- •79. Математическая модель и математическое моделирование. Этапы математического моделирования.
- •Функционально полные наборы логических элементов
44. Использование внешних устройств в компьютерной сети. Сетевые устройства ввода/вывода,
Хранение информации на сервере, файлообменники и внешние ресурсы. Сетевые устройства
Устройства, подключенные к какому-либо сегменту сети, называют сетевыми устройствами. Их принято подразделять на 2 группы:
1. Устройства пользователя. В эту группу входят компьютеры, принтеры, сканеры и другие устройства, которые выполняют функции, необходимые непосредственно пользователю сети;
2. Сетевые устройства. Эти устройства позволяют осуществлять связь с другими сетевыми устройствами или устройствами конечного пользователя. В сети они выполняют специфические функции.
У каждого компьютера, который подключен к сети, есть два основных адреса: IP-адрес и MAC-адрес. Основная задача MAC-адреса - это однозначная идентификация конкретного устройства. По MAC-адресу можно однозначно идентифицировать устройство, которое подключено в сеть. MAC-адреса имеют линейную структуру, то есть по имени студента невозможно сказать где он учится, с кем он учится и т. д. MAC-адрес прошит в сетевую плату и его изменить невозможно. MAC-адрес состоит из 48 бит, которые сгруппированы в 12 шестнадцатиразрядных чисел. Первые 6 задают производителя сетевой карты, последние 6 задают конкретное устройство.
Типы сетевых устройств Сетевые карты
Устройства, которые связывают конечного пользователя с сетью, называются такжеоконечными узлами или станциями (host). Примером таких устройств является обычный персональный компьютер или рабочая станция (мощный компьютер, выполняющий определенные функции, требующие большой вычислительной мощности. Например, обработка видео, моделирование физических процессов и т.д.). Для работы в сети каждый хост оснащен платой сетевого интерфейса (Network Interface Card — NIC), также называемой сетевым адаптером. Как правило, такие устройства могут функционировать и без компьютерной сети.
Повторители (repeater) представляют собой сетевые устройства, функционирующие на первом (физическом) уровне эталонной модели OSI. Целью использования повторителя является регенерация и ресинхронизация сетевых сигналов на битовом уровне, что позволяет передавать их по среде на большее расстояние.
Концентратор — это один из видов сетевых устройств, которые можно устанавливать на уровне доступа сети Ethernet.
Он просто принимает электронные сигналы одного порта и воспроизводит (или ретранслирует) то же сообщение для всех остальных портов.
Маски подсети и шлюзы Сервер - это служба (программа, если хотите), которая запущена на компьютере. Репитер (повторитель) - это устройство, которое предназначено для усиления сигнала. Используется для увеличения дальности соединения. Хаб (концентратор) - это устройство, которое содержит несколько портов. При подаче сигнала на один порт - он усиливается и передается на остальные порты. Хаб - это по сути многопортовый репитер. И хаб, и репитер работают на первом (физическом) уровне модели OSI. Бридж (мост) - это устройство, которое служит для фильтрации трафика по MAC-адресам. Он разделяет домены коллизий. Свич (коммутатор) - это по сути многопортовый мост. Основной задачей коммутатора служит создание "виртуальных" каналов между устройствами на основе MAC-адресов.
Сетевые принтеры - выгодная альтернатива принтерам персональным. Один большой и производительный аппарат способен гораздо быстрее справляться с заданиями печати, чем несколько мелких.
Существует несколько способов "превращения" обычного принтера в сетевой: через общий доступ, через внешний принт-сервер или через внутренюю сетевую карту принтера.
Разделённый (расшаренный) принтер для общего доступа
Это самый простой в исполнении, но самый ограниченный по возможностям вариант сетевого использования принтера. Он подразумевает, что принтер, который должен быть доступен нескольким пользователям сети, подключен к одному из компьютеров и сделан общедоступным сетевым ресурсом (на жаргоне - "расшарен" от англ. share - разделение). После этого пользоваться этим принтером могут все пользователи данной сети.
2. Подключение через внешний принт-сервер стороннего производителя. Существует множество производителей, которые предлагают различные реализации внешних принт-серверов, позволяющих подключать обычные принтеры к сети. Представлять из себя эти принт-серверы могут либо простейшую "коробочку", в которой с одной стороны есть разъём RJ-45 для подключения сетевого кабеля, а с другой разъём параллельного порта, либо разъём для подключения USB-кабеля. Либо это может быть более современное, комбинированное решение, представляющее из себя, к примеру, точку доступа к беспроводной сети, сетевой концентратор, клиента VPN и принт-сервер, подключаемый к принтеру через USB-порт.
3. Подключение через "родную" сетевую карту/принт-сервер.
Многие принтеры подразумевают установку в них внутренней сетевой платы, сделанной специально для этой модели (или для нескольких моделей этого производителя). В этом случае плата устанавливается на внутреннюю системную шину принтера и потому данные передаются на принтер на максимально возможной для сети скорости. Кроме того, внутренняя сетевая плата позволяет осуществлять управление принтером через сеть и с другой стороны, через панель управления принтером можно изменять настройки сетевой платы.
Файлообменник, файлхостинг или файловый хостинг — сервис, предоставляющий пользователю место под его файлы и круглосуточный доступ к ним через web, как правило по протоколу http. Такой сервис позволяет удобно «обмениваться» файлами. На специальной странице файлообменника (чаще всего на главной) пользователь загружает файл на сервер файлообменника, а файлообменник отдает пользователю постоянную ссылку, которую он может рассылать по e-mail, публиковать в блогах, на форумах или пересылать через системы IM. Перейдя по такой ссылке любой другой пользователь может скачать изначальный файл.