
- •1. Нелинейные сар. Понятия: «пространство состояний», «фазовая траектория», «фазовый портрет».
- •2. Проблема двойственности в линейном программировании.
- •3. Составляющие информационной системы (ис). Модели жизненного цикла ис.
- •4, 31. Методы определения оптимальных параметров настройки промышленных регуляторов.
- •5. Автоколебания в сар. Определение параметров автоколебаний с помощью графических построений.
- •6,14. Математическая постановка задач оптимального управления. Пример: «Нажимное устройство реверсивного прокатного стана».
- •7,11,59. Назначение, классификация, и функции субд. Структура субд и назначение основных компонентов. Транзакции. Свойства транзакций.
- •8,20. Оценка качества сар по временным характеристикам
- •9. Представление импульсного элемента при исследовании импульсных сар.
- •10. Синтез сар оптимальной по быстродействию.
- •12. Принципы системного подхода в моделировании. Сетевые модели.
- •13. Связь между спектрами сигналов на входе и выходе простейшего импульсного элемента. Теорема Котельникова.
- •15. Модели управления передачей, обработкой и хранением данных в информационных системах на основе технологии «клиент-сервер»
- •16. Непрерывно-стохастические модели на примере систем массового обслуживания.
- •17. Процессы конечной длительности в импульсных сар.
- •19, 55. Характеристика нормальных форм реляционной модели данных.
- •21. Алгебраический аналог критерия устойчивости Гурвица для исар.
- •22. Системы управления на основе нечеткой логики.
- •23. Реляционная модель данных. Понятие функциональной зависимости. Процесс нормализации базы данных.
- •Целостность данных
- •Реляционная алгебра
- •Нормализация базы данных
- •24. Синтез сар по логарифмическим характеристикам.
- •25. Метод гармонической линеаризации нелинейностей.
- •26. Системы управления на основе искусственных нейронных сетей.
- •27,35. Цифровые регуляторы и выбор периода квантования.
- •28. Аппроксимация кривых разгона методом площадей.
- •29. Характер движения в нелинейных и линейных сар.
- •30. Техническая диагностика. Математические основы технической диагностики.
- •32. Функции операционных систем: управление задачами, данными, исключениями и восстановлением.
- •33. Устойчивость линейных сар. Признаки устойчивости. Запасы устойчивости линейных сар.
- •34. Статистические методы распознавания. Метод Бейеса.
- •36. Реляционная алгебра Кодда
- •37. Устойчивость линейных непрерывных систем. Критерий устойчивости Найквиста.
- •38. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент.
- •Черный ящик
- •39. Определение, назначение и классификация компьютерных сетей. Базовые топологии локальных компьютерных сетей.
- •40. Уровни памяти в вычислительных системах и их взаимодействие. Регистры, кэш, озу, взу. Их типы и классификация.
- •41. Критерий устойчивости Михайлова для непрерывных и линейных сар.
- •Доказательство
- •42. Частотные методы идентификации динамических объектов.
- •43. Определение, назначение и классификация компьютерных сетей. Топология глобальной компьютерной сети.
- •44. Использование внешних устройств в компьютерной сети. Сетевые устройства ввода/вывода,
- •Хранение информации на сервере, файлообменники и внешние ресурсы. Сетевые устройства
- •Типы сетевых устройств Сетевые карты
- •45. Виды корректирующих средств в сар. Недостатки последовательной коррекции.
- •46. Типовые процессы регулирования.
- •Апериодический переходной процесс с минимальным временем регулирования.
- •Переходной процесс с 20%-ным перерегулированием и минимальным временем первого полупериода.
- •Переходной процесс, обеспечивающий минимум интегрального критерия качества.
- •47. Эталонная модель взаимодействия открытых систем osi. Характеристика уровней osi.
- •48. Регистровая память компьютера и её назначение. Типы регистров процессора в реальном режиме. Дополнительные регистры защищённого режима.
- •Новые системные регистры микропроцессоров i80x86
- •49. Гармоническая линеаризация. Физический смысл коэффициентов гармонической линеаризации.
- •50. Идентификация объектов по временным характеристикам. Определение кривой разгона объекта по его импульсной характеристике.
- •51. Общая структура современных асу тп
- •53. Устойчивость нелинейных систем. Метод л.С. Гольдфарба.
- •54. Идентификация динамических систем. Активные и пассивные методы идентификации.
- •Внутренние и внешние, параллельные и последовательные интерфейсы компьютера. Примеры интерфейсов и шин, их основные характеристики.
- •Последовательный и параллельный интерфейсы ввода-вывода
- •57. Точные методы исследования устойчивости и автоколебаний в нелинейных системах. Частотный метод в.М. Попова.
- •58. Методы аппроксимации кривых разгона объекта.
- •61. 65. Статические характеристики нелинейных элементов.
- •62. Обеспечивающие подсистемы информационно - управляющих систем и их характеристики.
- •63. Методы расчета осау. Вариационный метод.
- •Вариационное исчисление
- •64. Назначение системы прерываний эвм. Синхронные и асинхронные, внутренние и внешние прерывания.
- •66. Промышленные регуляторы, их назначение и передаточные функции.
- •67. Функциональные подсистемы информационно- управляющих систем и их характеристики.
- •68. Виртуальные ресурсы в компьютерных сетях. Виртуальные накопители, виртуальные внешние устройства, виртуальная память и виртуальные процессоры.
- •Виртуализация устройств и структура драйвера
- •69. Классификация задач оптимального управления.
- •70. Организационные подсистемы информационно- управляющих систем и их характеристики.
- •71. Методы расчета оптимальных осау. Принцип максимума Понтрягина.
- •Вариационное исчисление
- •Принцип максимума Понтрягина
- •74. Принципы построения автоматизированных систем управления.
- •76. Типы команд и разновидности адресации в микропроцессорах. Cisc, risc и vliw процессоры.
- •Cisc-процессоры
- •Risc-процессоры
- •Vliw-процессоры
- •77. Понятие области нормальных режимов регулятора (онр) и области допустимых настроек регулятора (одн)
- •78. Состав интегрированной системы автоматизации предприятия.
- •79. Математическая модель и математическое моделирование. Этапы математического моделирования.
- •Функционально полные наборы логических элементов
42. Частотные методы идентификации динамических объектов.
Динамические свойства объекта могут быть описаны с помощью частотных характеристик, которые представляют собой зависимость от частоты в установившемся режиме двух переменных: 1) отношение амплитуд гармонических сигналов на вход и выход объекта – это АЧХ; 2) сдвиг фаз между входным и выходным сигналами – это ФЧХ. Указанные характеристики изображаются в 2-х форматах: 1) в виде совокупности АЧХ и ФЧХ в прямоугольной системе координат (форма Боде); 2) характеристик строиться в полярных координатах в комплексной плоскости и представляет амплитудно-фазовую характеристику (АФХ) или динамику Найквиста.
Если в диаграмме Боде А(
)
заменяется на L(
),
то характеристика называется
логарифмо-частотной характеристикой
(ЛЧХ)
Заданные аналитически или графически частотные характеристик объекта позволяют рассчитать контур стабилизации со стандартным регулятором, например: с ПИ или ПИД законом регулирования.
Эксперимент, с помощью которого исследуются частотные характеристики значительно трудоемок на аппаратуре и времени проведения по сравнению с переходными характеристиками. Для исследования необходима аппаратура с помощью которой на вход объекта можно подать гармонический сигнал. Выходной сигнал как правило всегда зашумлен и искажен нелинейностями, имеющимися в объекте. Поэтому для определения амплитуды и фазы выходного гармонического сигнала необходимо выделение 1-ой гармонической составляющей вручную или с помощью спец. аппаратуры. Исследование на различных в том числе и низких частотах требует много времени. Поскольку при исследовании частотных характеристик рассматриваются вынужденные, а не свободные движения системы, то необходимо некоторое время для затухания свободного движения.
На исследование частотных характеристик неблагоприятное влияние оказывают тренды, вызывающие выползание средней линии выходного сигнала. Для уменьшения ошибок из-за выползания средней линии и уменьшения влияния помех снятия частотных характеристик проводят в замкнутой системе приведенной на рис. 1., где объект охвачен обратной связью с регулятором.
|
|
|
|
|
|
Помехи приведенные к выходу объекта
(t)
могут содержать кроме случайных
составляющих и детерминированные
тренды. Но в сигнале Y(t)
уползание будет устранено, а воздействие
случайных составляющих на выходе
(t)
значительно ослаблено.
Гармонический сигнал теперь будет подаваться не на регулирующий орган, а на датчик регулятора. В этом случае требуется генератор с меньшей мощностью.
Y
(t)
x(t)
y(t)
Рис.1.
На анализатор А, выделяющий первые гармонические составляющие подаются на входные и выходные сигналы объекта управления. Полученные таким образом частотные характеристики могут быть непосредственно использованы для расчета системы управления.
Частотный метод по сравнению с временным имеет ряд преимуществ:
при снятии частотных характеристик объект исследуется в установившемся, а не переходном режиме, поэтому влияние случайных помех на результаты будут сказываться меньше;
соответствующим выборам амплитуды входных колебаний можно установить достаточно большие колебания регулируемых величин, при которых погрешности измерительных приборов будут мало сказываться.
Вместе с тем частотный метод имеет и отрицательные стороны:
длительность эксперимента;
большая трудоемкость в обработке полученных результатов.
Для уменьшения затрат времени на снятия частотных характеристик и их обработку применяют специальное оборудование, содержащее генератор синусоидальных колебаний и вычислительные устройства для выделения 1-х гармоник и выполнения расчетов.