
- •1. Нелинейные сар. Понятия: «пространство состояний», «фазовая траектория», «фазовый портрет».
- •2. Проблема двойственности в линейном программировании.
- •3. Составляющие информационной системы (ис). Модели жизненного цикла ис.
- •4, 31. Методы определения оптимальных параметров настройки промышленных регуляторов.
- •5. Автоколебания в сар. Определение параметров автоколебаний с помощью графических построений.
- •6,14. Математическая постановка задач оптимального управления. Пример: «Нажимное устройство реверсивного прокатного стана».
- •7,11,59. Назначение, классификация, и функции субд. Структура субд и назначение основных компонентов. Транзакции. Свойства транзакций.
- •8,20. Оценка качества сар по временным характеристикам
- •9. Представление импульсного элемента при исследовании импульсных сар.
- •10. Синтез сар оптимальной по быстродействию.
- •12. Принципы системного подхода в моделировании. Сетевые модели.
- •13. Связь между спектрами сигналов на входе и выходе простейшего импульсного элемента. Теорема Котельникова.
- •15. Модели управления передачей, обработкой и хранением данных в информационных системах на основе технологии «клиент-сервер»
- •16. Непрерывно-стохастические модели на примере систем массового обслуживания.
- •17. Процессы конечной длительности в импульсных сар.
- •19, 55. Характеристика нормальных форм реляционной модели данных.
- •21. Алгебраический аналог критерия устойчивости Гурвица для исар.
- •22. Системы управления на основе нечеткой логики.
- •23. Реляционная модель данных. Понятие функциональной зависимости. Процесс нормализации базы данных.
- •Целостность данных
- •Реляционная алгебра
- •Нормализация базы данных
- •24. Синтез сар по логарифмическим характеристикам.
- •25. Метод гармонической линеаризации нелинейностей.
- •26. Системы управления на основе искусственных нейронных сетей.
- •27,35. Цифровые регуляторы и выбор периода квантования.
- •28. Аппроксимация кривых разгона методом площадей.
- •29. Характер движения в нелинейных и линейных сар.
- •30. Техническая диагностика. Математические основы технической диагностики.
- •32. Функции операционных систем: управление задачами, данными, исключениями и восстановлением.
- •33. Устойчивость линейных сар. Признаки устойчивости. Запасы устойчивости линейных сар.
- •34. Статистические методы распознавания. Метод Бейеса.
- •36. Реляционная алгебра Кодда
- •37. Устойчивость линейных непрерывных систем. Критерий устойчивости Найквиста.
- •38. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент.
- •Черный ящик
- •39. Определение, назначение и классификация компьютерных сетей. Базовые топологии локальных компьютерных сетей.
- •40. Уровни памяти в вычислительных системах и их взаимодействие. Регистры, кэш, озу, взу. Их типы и классификация.
- •41. Критерий устойчивости Михайлова для непрерывных и линейных сар.
- •Доказательство
- •42. Частотные методы идентификации динамических объектов.
- •43. Определение, назначение и классификация компьютерных сетей. Топология глобальной компьютерной сети.
- •44. Использование внешних устройств в компьютерной сети. Сетевые устройства ввода/вывода,
- •Хранение информации на сервере, файлообменники и внешние ресурсы. Сетевые устройства
- •Типы сетевых устройств Сетевые карты
- •45. Виды корректирующих средств в сар. Недостатки последовательной коррекции.
- •46. Типовые процессы регулирования.
- •Апериодический переходной процесс с минимальным временем регулирования.
- •Переходной процесс с 20%-ным перерегулированием и минимальным временем первого полупериода.
- •Переходной процесс, обеспечивающий минимум интегрального критерия качества.
- •47. Эталонная модель взаимодействия открытых систем osi. Характеристика уровней osi.
- •48. Регистровая память компьютера и её назначение. Типы регистров процессора в реальном режиме. Дополнительные регистры защищённого режима.
- •Новые системные регистры микропроцессоров i80x86
- •49. Гармоническая линеаризация. Физический смысл коэффициентов гармонической линеаризации.
- •50. Идентификация объектов по временным характеристикам. Определение кривой разгона объекта по его импульсной характеристике.
- •51. Общая структура современных асу тп
- •53. Устойчивость нелинейных систем. Метод л.С. Гольдфарба.
- •54. Идентификация динамических систем. Активные и пассивные методы идентификации.
- •Внутренние и внешние, параллельные и последовательные интерфейсы компьютера. Примеры интерфейсов и шин, их основные характеристики.
- •Последовательный и параллельный интерфейсы ввода-вывода
- •57. Точные методы исследования устойчивости и автоколебаний в нелинейных системах. Частотный метод в.М. Попова.
- •58. Методы аппроксимации кривых разгона объекта.
- •61. 65. Статические характеристики нелинейных элементов.
- •62. Обеспечивающие подсистемы информационно - управляющих систем и их характеристики.
- •63. Методы расчета осау. Вариационный метод.
- •Вариационное исчисление
- •64. Назначение системы прерываний эвм. Синхронные и асинхронные, внутренние и внешние прерывания.
- •66. Промышленные регуляторы, их назначение и передаточные функции.
- •67. Функциональные подсистемы информационно- управляющих систем и их характеристики.
- •68. Виртуальные ресурсы в компьютерных сетях. Виртуальные накопители, виртуальные внешние устройства, виртуальная память и виртуальные процессоры.
- •Виртуализация устройств и структура драйвера
- •69. Классификация задач оптимального управления.
- •70. Организационные подсистемы информационно- управляющих систем и их характеристики.
- •71. Методы расчета оптимальных осау. Принцип максимума Понтрягина.
- •Вариационное исчисление
- •Принцип максимума Понтрягина
- •74. Принципы построения автоматизированных систем управления.
- •76. Типы команд и разновидности адресации в микропроцессорах. Cisc, risc и vliw процессоры.
- •Cisc-процессоры
- •Risc-процессоры
- •Vliw-процессоры
- •77. Понятие области нормальных режимов регулятора (онр) и области допустимых настроек регулятора (одн)
- •78. Состав интегрированной системы автоматизации предприятия.
- •79. Математическая модель и математическое моделирование. Этапы математического моделирования.
- •Функционально полные наборы логических элементов
28. Аппроксимация кривых разгона методом площадей.
В основе метода лежит предположение, что исследуемый объект регулирования может быть описан линейным дифференциальным уравнением с постоянными коэффициентами:
Где
- постоянные коэффициенты. Передаточная
функция объекта, описываемого уравнением
(2.18) может быть представлена как
(2.19) или в
размерной форме
(2.20)
Задача состоит в
том, чтобы определить неизвестные
коэффициенты
, используя для этого систему уравнений
(2.21). В Этой системе уравнений
и для всех значений
(2.21)
Входящие в данную
систему уравнений коэффициенты
вычисляются
по следующим формулам:
(2.22)
Эти коэффициенты
получили название «площадей». Для F1
– это действительно геометрическая
площадь (рис. 2.15), а для остальных
коэффициентов это название условно. В
формулах (2.22) введена новая переменная
.
В практике чаще всего встречаются следующие объекты:
1. Объекты с самовыравниванием без транспортного запаздывания;
2. Объекты без самовыравнивания и без транспортного запаздывания;
3. Объекты обоих видов, но с транспортным запаздыванием.
29. Характер движения в нелинейных и линейных сар.
НСАР называется такая система, которая содержит хотя бы одно звено, описываемое нелинейным уравнением.
Процессы в НСАР имеют целый ряд весьма существенных особенностей, которые не встречаются в линейных системах. Благодаря этим существенным особенностям даже вопрос об устойчивости системы становится здесь более сложным. Кроме структуры системы значений ее параметров для устойчивости того или иного установившегося процесса имеют значение здесь, в отличие от нелинейных систем, также и начальные условия. Возможен новый вид установившегося процесса – автоколебания, т.е. устойчивые собственные колебания с постоянной амплитудой при отсутствии внешних колебательных воздействий. Когда в системе возникают автоколебания, то установившееся состояние, соответствующее постоянному значению регулируемой величины, часто становится невозможным.
Следовательно, в общем случае на плоскости параметров системы могут быть не два вида областей (устойчивости и неустойчивости), как в линейных системах, а больше: 1) область устойчивости равновесного состояния с постоянным значением регулируемой величины; 2) область устойчивых автоколебаний; 3) область неустойчивости системы; 4) области, соответствующие другим, более сложным случаям (зоны застоя области с различной топологией фазовых траекторий, разделяемые сепаратрисами и т.д.).
Если процессы в системе имеют вид, указанный на рис. а), то равновесное состояние системы (х=0) неустойчиво. В том случае, когда оба указанных на рис .а) колебания в переменных процессах стремятся к одной и той же амплитуде и частоте, система будет обладать устойчивыми автоколебаниями с амплитудой «а».
На рис. б) показан случай, когда равновесное состояние (х=0) системы устойчиво «в малом», т.е. при начальных условиях, не выводящих отклонения в переходном процессе за определенную величину «а», и неустойчива «в большом», т.е. при начальных условиях, выводящих отклонения в переходном процессе за пределы величины «а». здесь граничным процессом является неустойчивый периодических процесс собственного движения системы с амплитудой «а» (переходные процессы расходятся от него в обе стороны).
На рис. в) показали случай трех возможных установившихся состояний: 1) равновесное состояние (х=0), 2) колебания с постоянной амплитудой а1, 3) колебания с постоянной амплитудой а2. При этом колебания с амплитудой а1 неустойчивы. В результате система будет устойчива «в малом» по отношению к равновесному состоянию х=0, а «в большом» система будет обладать устойчивыми автоколебаниями с амплитудой а2.